Experimental Investigation of heat dissipation of Fe: ZnSe crystal

Author(s):  
Kuo Zhang ◽  
Fei Chen ◽  
Jijiang Xie ◽  
Qikun Pan ◽  
Yang He ◽  
...  
2018 ◽  
Vol 24 (7) ◽  
pp. 19
Author(s):  
Maha Ali Hussein

An experimental investigation has been made to study the influence of using v-corrugated aluminum fin on heat transfer coefficient and heat dissipation in a heat sink. The geometry of fin is changed to investigate their performance. 27 circular perforations with 1 cm diameter were made. The holes designed into two ways, inline arrangement and staggered in the corrugated edges arrangement. The experiments were done in enclosure space under natural convection. Three different voltages supplied to the heat sink to study their effects on the fins performance. All the studied cases are compared with v-corrugated smooth solid fin. Each experiment was repeated two times to reduce the error and the data recorded after reaching the steady state conditions. The results showed that the v-corrugated fin dissipate heat twice and triple times than flat plate mentioned in past research with the same dimension. Also, the inline perforated fin gave higher enhancement percentage than solid one by 15, 32 and 36% for 110, 150 and 200 V voltages supplied. Finally, the staggered perforation arrangement gave the higher enhancement percentage with 22, 42 and 45% for the same voltages supply.  


2021 ◽  
Vol 11 (3) ◽  
pp. 279-284
Author(s):  
Driss Meddah Medjahed ◽  
Giulio Lorenzini ◽  
Redha Rebhi ◽  
Hijaz Ahmad ◽  
Younes Menni

This research is based on an experimental investigation of four different types of heatsinks, which was backed up by a simulation analysis. The goal of this study is to determine the relevance of various heatsink forms and sizes, as well as to enhance the best situation. The cooling strength of these heatsinks was next investigated experimentally and then numerically, while adjusting in the same initial conditions, finding in principle that the experimental and numerical results agree, with a contrast ratio of less than 10.24%. As a consequence, we concluded that the coolant D3, which is circular and has a heat resistance of 0.582 K. W-1, is stronger than the D2 compact circular cooler, which has a resistance of 0.590 K. W-1. These two varieties were far superior to the regular D1 heatsink, which first debuted in the early days of computers and had a resistance of 0.595 K. W-1, but the best was the mixed engineering D4 heatsink, which had a heat resistance of 0.50 K. W-1. Changes were also made to the geometry of the best heatsink D4, by varying its heights (28, 23, 19, and 15 mm). The heat resistors were arranged in sequence (0.50, 0.560, 0.568, 0.586 kg/s), and the weights were arranger in order (3.12N, 2.56N, 2.11N and 1.67N).


2021 ◽  
Vol 39 (1A) ◽  
pp. 34-44
Author(s):  
Talib Z. Farge ◽  
Samar J. Ismael ◽  
Rawad M. Thyab

The present work investigated the thermal performance of thermosyphon by using distilled water as a working fluid at different filling ratios (50%, 60%, and 70 %). The thermosyphon was manufactured from a copper tube with outer and inner diameters (26 and 24) mm, respectively. The thermosyphon was tested experimentally at different input power (100, 200 and 300) Watt. The operating temperature of the oil was chosen below 85°C. Experimental results revealed that the filling ratio of 60% exhibited the best heat dissipation at the highest operating temperature. While the low operating temperature and 50 % filling ratio show better heat dissipation. Further, it was found that the thermal resistance of the thermosyphon was obviously decreased with increasing the input power. The percentage decrease in the thermal resistance of the thermosyphon at a filling ratio of 0.6 was 14.6 % compared with that filling ratio of 0.5 at an input power of 300 W.


Sign in / Sign up

Export Citation Format

Share Document