scholarly journals Two-photon high-speed light-sheet volumetric imaging of brain activity during sleep in zebrafish larvae

Author(s):  
Giuseppe de Vito ◽  
Chiara Fornetto ◽  
Pietro Ricci ◽  
Caroline Müllenbroich ◽  
Giuseppe Sancataldo ◽  
...  
2018 ◽  
Author(s):  
Shuting Han ◽  
Weijian Yang ◽  
Rafael Yuste

To capture the emergent properties of neural circuits, high-speed volumetric imaging of neural activity at cellular resolution is desirable. But while conventional two-photon calcium imaging is a powerful tool to study population activity in vivo, it is restrained to two-dimensional planes. Expanding it to 3D while maintaining high spatiotemporal resolution appears necessary. Here, we developed a two-photon microscope with dual-color laser excitation that can image neural activity in a 3D volume. We imaged the neuronal activity of primary visual cortex from awake mice, spanning from L2 to L5 with 10 planes, at a rate of 10 vol/sec, and demonstrated volumetric imaging of L1 long-range PFC projections and L2/3 somatas. Using this method, we map visually-evoked neuronal ensembles in 3D, finding a lack of columnar structure in orientation responses and revealing functional correlations between cortical layers which differ from trial to trial and are missed in sequential imaging. We also reveal functional interactions between presynaptic L1 axons and postsynaptic L2/3 neurons. Volumetric two-photon imaging appears an ideal method for functional connectomics of neural circuits.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Cody J. Greer ◽  
Timothy E. Holy

Abstract Among optical imaging techniques light sheet fluorescence microscopy is one of the most attractive for capturing high-speed biological dynamics unfolding in three dimensions. The technique is potentially millions of times faster than point-scanning techniques such as two-photon microscopy. However light sheet microscopes are limited by volume scanning rate and/or camera speed. We present speed-optimized Objective Coupled Planar Illumination (OCPI) microscopy, a fast light sheet technique that avoids compromising image quality or photon efficiency. Our fast scan system supports 40 Hz imaging of 700 μm-thick volumes if camera speed is sufficient. We also address the camera speed limitation by introducing Distributed Planar Imaging (DPI), a scaleable technique that parallelizes image acquisition across cameras. Finally, we demonstrate fast calcium imaging of the larval zebrafish brain and find a heartbeat-induced artifact, removable when the imaging rate exceeds 15 Hz. These advances extend the reach of fluorescence microscopy for monitoring fast processes in large volumes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sota Takanezawa ◽  
Takashi Saitou ◽  
Takeshi Imamura

AbstractTwo-photon excitation can lower phototoxicity and improve penetration depth, but its narrow excitation range restricts its applications in light-sheet microscopy. Here, we propose simple illumination optics, a lens-axicon triplet composed of an axicon and two convex lenses, to generate longer extent Bessel beams. This unit can stretch the beam full width at half maximum of 600–1000 μm with less than a 4-μm waist when using a 10× illumination lens. A two-photon excitation digital scanned light-sheet microscope possessing this range of field of view and ~2–3-μm axial resolution is constructed and used to analyze the cellular dynamics over the whole body of medaka fish. We demonstrate long-term time-lapse observations over several days and high-speed recording with ~3 mm3 volume per 4 s of the embryos. Our system is minimal and suppresses laser power loss, which can broaden applications of two-photon excitation in light-sheet microscopy.


2017 ◽  
Author(s):  
Hao Wang ◽  
Qingyuan Zhu ◽  
Lufeng Ding ◽  
Yan Shen ◽  
Chao-Yu Yang ◽  
...  

We describe a new light-sheet microscopy method for fast, large-scale volumetric imaging. Combining synchronized scanning illumination and oblique imaging over cleared, thick tissue sections in smooth motion, our approach achieves high-speed 3D image acquisition of an entire mouse brain within 2 hours, at a resolution capable of resolving synaptic spines. It is compatible with immunofluorescence labeling, enabling flexible cell-type specific brain mapping, and is readily scalable for large biological samples such as primate brain.


2019 ◽  
Vol 42 (1) ◽  
pp. 295-313 ◽  
Author(s):  
Elizabeth M.C. Hillman ◽  
Venkatakaushik Voleti ◽  
Wenze Li ◽  
Hang Yu

Light-sheet microscopy is an imaging approach that offers unique advantages for a diverse range of neuroscience applications. Unlike point-scanning techniques such as confocal and two-photon microscopy, light-sheet microscopes illuminate an entire plane of tissue, while imaging this plane onto a camera. Although early implementations of light sheet were optimized for longitudinal imaging of embryonic development in small specimens, emerging implementations are capable of capturing light-sheet images in freely moving, unconstrained specimens and even the intact in vivo mammalian brain. Meanwhile, the unique photobleaching and signal-to-noise benefits afforded by light-sheet microscopy's parallelized detection deliver the ability to perform volumetric imaging at much higher speeds than can be achieved using point scanning. This review describes the basic principles and evolution of light-sheet microscopy, followed by perspectives on emerging applications and opportunities for both imaging large, cleared, and expanded neural tissues and high-speed, functional imaging in vivo.


2018 ◽  
Author(s):  
Mariya Chavarha ◽  
Vincent Villette ◽  
Ivan K. Dimov ◽  
Lagnajeet Pradhan ◽  
Stephen W. Evans ◽  
...  

ABSTRACTImaging of transmembrane voltage deep in brain tissue with cellular resolution has the potential to reveal information processing by neuronal circuits in living animals with minimal perturbation. Multi-photon voltage imaging in vivo, however, is currently limited by speed and sensitivity of both indicators and imaging methods. Here, we report the engineering of an improved genetically encoded voltage indicator, ASAP3, which exhibits up to 51% fluorescence responses in the physiological voltage range, sub-millisecond activation kinetics, and full responsivity under two-photon illumination. We also introduce an ultrafast local volume excitation (ULOVE) two-photon scanning method to sample ASAP3 signals in awake mice at kilohertz rates with increased stability and sensitivity. ASAP3 and ULOVE allowed continuous single-trial tracking of spikes and subthreshold events for minutes in deep locations, with subcellular resolution, and with repeated sampling over multiple days. By imaging voltage in visual cortex neurons, we found evidence for cell type-dependent subthreshold modulation by locomotion. Thus, ASAP3 and ULOVE enable continuous high-speed high-resolution imaging of electrical activity in deeply located genetically defined neurons during awake behavior.


2021 ◽  
Author(s):  
Giuseppe de Vito ◽  
Lapo Turrini ◽  
Marie-Caroline Muellenbroich ◽  
pietro ricci ◽  
Giuseppe Sancataldo ◽  
...  

2020 ◽  
Author(s):  
Giuseppe de Vito ◽  
Lapo Turrini ◽  
Chiara Fornetto ◽  
Pietro Ricci ◽  
Caroline Müllenbroich ◽  
...  

2020 ◽  
Author(s):  
Kevin W. Bishop ◽  
Adam K. Glaser ◽  
Jonathan T.C. Liu

AbstractLight-sheet microscopy (LSM) has emerged as a powerful tool for high-speed volumetric imaging of live model organisms and large optically cleared specimens. When designing cleared-tissue LSM systems with certain desired imaging specifications (e.g. resolution, contrast, and working distance), various design parameters must be taken into consideration. In order to elucidate some of the key design trade-offs for LSM systems, we present a diffraction-based analysis of single- and dual-objective LSM configurations where Gaussian illumination is utilized. Specifically, we analyze the effects of the illumination and collection numerical aperture (NA), as well as their crossing angle, on spatial resolution and contrast. Assuming an open-top light-sheet (OTLS) architecture, we constrain these parameters based on fundamental geometric considerations as well as those imposed by currently available microscope objectives. In addition to revealing the performance tradeoffs of various single- and dual-objective LSM configurations, our analysis showcases the potential advantages of a novel, non-orthogonal dual-objective (NODO) architecture, especially for moderate-resolution imaging applications (collection NA of 0.5 to 0.8).


Sign in / Sign up

Export Citation Format

Share Document