scholarly journals Light-Sheet Microscopy in Neuroscience

2019 ◽  
Vol 42 (1) ◽  
pp. 295-313 ◽  
Author(s):  
Elizabeth M.C. Hillman ◽  
Venkatakaushik Voleti ◽  
Wenze Li ◽  
Hang Yu

Light-sheet microscopy is an imaging approach that offers unique advantages for a diverse range of neuroscience applications. Unlike point-scanning techniques such as confocal and two-photon microscopy, light-sheet microscopes illuminate an entire plane of tissue, while imaging this plane onto a camera. Although early implementations of light sheet were optimized for longitudinal imaging of embryonic development in small specimens, emerging implementations are capable of capturing light-sheet images in freely moving, unconstrained specimens and even the intact in vivo mammalian brain. Meanwhile, the unique photobleaching and signal-to-noise benefits afforded by light-sheet microscopy's parallelized detection deliver the ability to perform volumetric imaging at much higher speeds than can be achieved using point scanning. This review describes the basic principles and evolution of light-sheet microscopy, followed by perspectives on emerging applications and opportunities for both imaging large, cleared, and expanded neural tissues and high-speed, functional imaging in vivo.

2018 ◽  
Author(s):  
Tsung-Li Liu ◽  
Srigokul Upadhyayula ◽  
Daniel E. Milkie ◽  
Ved Singh ◽  
Kai Wang ◽  
...  

AbstractTrue physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution without inducing undue stress on either. We combined lattice light sheet microscopy with two-channel adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages, and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments.One Sentence SummaryCombining lattice light sheet microscopy with adaptive optics enables high speed, high resolution in vivo 3D imaging of dynamic processes inside cells under physiological conditions within their parent organisms.


2017 ◽  
Author(s):  
Hao Wang ◽  
Qingyuan Zhu ◽  
Lufeng Ding ◽  
Yan Shen ◽  
Chao-Yu Yang ◽  
...  

We describe a new light-sheet microscopy method for fast, large-scale volumetric imaging. Combining synchronized scanning illumination and oblique imaging over cleared, thick tissue sections in smooth motion, our approach achieves high-speed 3D image acquisition of an entire mouse brain within 2 hours, at a resolution capable of resolving synaptic spines. It is compatible with immunofluorescence labeling, enabling flexible cell-type specific brain mapping, and is readily scalable for large biological samples such as primate brain.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Michael Weber ◽  
Nico Scherf ◽  
Alexander M Meyer ◽  
Daniela Panáková ◽  
Peter Kohl ◽  
...  

Organogenesis depends on orchestrated interactions between individual cells and morphogenetically relevant cues at the tissue level. This is true for the heart, whose function critically relies on well-ordered communication between neighboring cells, which is established and fine-tuned during embryonic development. For an integrated understanding of the development of structure and function, we need to move from isolated snap-shot observations of either microscopic or macroscopic parameters to simultaneous and, ideally continuous, cell-to-organ scale imaging. We introduce cell-accurate three-dimensional Ca2+-mapping of all cells in the entire electro-mechanically uncoupled heart during the looping stage of live embryonic zebrafish, using high-speed light sheet microscopy and tailored image processing and analysis. We show how myocardial region-specific heterogeneity in cell function emerges during early development and how structural patterning goes hand-in-hand with functional maturation of the entire heart. Our method opens the way to systematic, scale-bridging, in vivo studies of vertebrate organogenesis by cell-accurate structure-function mapping across entire organs.


2020 ◽  
Author(s):  
Kevin W. Bishop ◽  
Adam K. Glaser ◽  
Jonathan T.C. Liu

AbstractLight-sheet microscopy (LSM) has emerged as a powerful tool for high-speed volumetric imaging of live model organisms and large optically cleared specimens. When designing cleared-tissue LSM systems with certain desired imaging specifications (e.g. resolution, contrast, and working distance), various design parameters must be taken into consideration. In order to elucidate some of the key design trade-offs for LSM systems, we present a diffraction-based analysis of single- and dual-objective LSM configurations where Gaussian illumination is utilized. Specifically, we analyze the effects of the illumination and collection numerical aperture (NA), as well as their crossing angle, on spatial resolution and contrast. Assuming an open-top light-sheet (OTLS) architecture, we constrain these parameters based on fundamental geometric considerations as well as those imposed by currently available microscope objectives. In addition to revealing the performance tradeoffs of various single- and dual-objective LSM configurations, our analysis showcases the potential advantages of a novel, non-orthogonal dual-objective (NODO) architecture, especially for moderate-resolution imaging applications (collection NA of 0.5 to 0.8).


2017 ◽  
Author(s):  
Michael Weber ◽  
Nico Scherf ◽  
Peter Kohl ◽  
Jan Huisken

AbstractOrganogenesis depends on orchestrated interactions between individual cells and morphogenically relevant cues at the tissue level. This is true for the heart, whose function critically relies on well-ordered communication between neighbouring cells, which is established and fine-tuned during development. For an integrated understanding of the development of structure and function, we need to move from isolated snap-shot observations of either microscopic or macroscopic parameters to simultaneous and, ideally continuous, cell-to-organ scale imaging. We introduce cell-accurate three-dimensional Ca2+-mapping of all cells in the entire heart during the looping stage in live embryonic zebrafish, using high-speed light sheet microscopy and tailored image processing and analysis. We show how myocardial region-specific heterogeneity in cell function emerges during early development and how structural patterning goes hand-in-hand with functional maturation of the entire heart. Our method opens the way to systematic, scale-bridging, in vivo studies of vertebrate organogenesis by cell-accurate structure-function mapping across entire organs.


2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Benjamin Schmid ◽  
Gopi Shah ◽  
Nico Scherf ◽  
Michael Weber ◽  
Konstantin Thierbach ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ashna Alladin ◽  
Lucas Chaible ◽  
Lucia Garcia del Valle ◽  
Reither Sabine ◽  
Monika Loeschinger ◽  
...  

Cancer clone evolution takes place within tissue ecosystem habitats. But, how exactly tumors arise from a few malignant cells within an intact epithelium is a central, yet unanswered question. This is mainly due to the inaccessibility of this process to longitudinal imaging together with a lack of systems that model the progression of a fraction of transformed cells within a tissue. Here, we developed a new methodology based on primary mouse mammary epithelial acini, where oncogenes can be switched on in single cells within an otherwise normal epithelial cell layer. We combine this stochastic breast tumor induction model with inverted light-sheet imaging to study single-cell behavior for up to four days and analyze cell fates utilizing a newly developed image-data analysis workflow. The power of this integrated approach is illustrated by us finding that small local clusters of transformed cells form tumors while isolated transformed cells do not.


2021 ◽  
Author(s):  
Kelly Kersten ◽  
Kenneth H Hu ◽  
Alexis J Combes ◽  
Bushra Samad ◽  
Tory Harwin ◽  
...  

T cell exhaustion is a major impediment to anti-tumor immunity. However, it remains elusive how other immune cells in the tumor microenvironment (TME) contribute to this dysfunctional state. Here we show that the biology of tumor-associated macrophages (TAM) and exhausted T cells (Tex) in the TME is extensively linked. We demonstrate that in vivo depletion of TAM reduces exhaustion programs in tumor-infiltrating CD8+ T cells and reinvigorates their effector potential. Reciprocally, transcriptional and epigenetic profiling reveals that Tex express factors that actively recruit monocytes to the TME and shape their differentiation. Using lattice light sheet microscopy, we show that TAM and CD8+ T cells engage in unique long-lasting antigen-specific synaptic interactions that fail to activate T cells, but prime them for exhaustion, which is then accelerated in hypoxic conditions. Spatially resolved sequencing supports a spatiotemporal self-enforcing positive feedback circuit that is aligned to protect rather than destroy a tumor.


2018 ◽  
Author(s):  
Cody Greer ◽  
Timothy E. Holy

Among optical imaging techniques light sheet fluorescence microscopy stands out as one of the most attractive for capturing high-speed biological dynamics unfolding in three dimensions. The technique is potentially millions of times faster than point-scanning techniques such as two-photon microscopy. However current-generation light sheet microscopes are limited by volume scanning rate and/or camera frame rate. We present speed-optimized Objective Coupled Planar Illumination (OCPI) microscopy, a fast light sheet technique that avoids compromising image quality or photon efficiency. We increase volume scanning rate to 40 Hz for volumes up to 700 µm thick and introduce Multi-Camera Image Sharing (MCIS), a technique to scale imaging rate by parallelizing acquisition across cameras. Finally, we demonstrate fast calcium imaging of the larval zebrafish brain and find a heartbeat-induced artifact that can be removed by filtering when the imaging rate exceeds 15 Hz. These advances extend the reach of fluorescence microscopy for monitoring fast processes in large volumes.


Sign in / Sign up

Export Citation Format

Share Document