LED illumination for fluorescence from Fura-2 to Cy7.5 and beyond: A true lamp replacement

Author(s):  
Kavita Aswani
Keyword(s):  
Author(s):  
Martin Poenie ◽  
Akwasi Minta ◽  
Charles Vorndran

The use of fura-2 as an intracellular calcium indicator is complicated by problems of rapid dye leakage and intracellular compartmentalization which is due to a probenecid sensitive anion transporter. In addition there is increasing evidence for localized microdomains of high calcium signals which may not be faithfully reported by fura-2.We have developed a new family of fura-2 analogs aimed at addressing some of these problems. These new indicators are based on a modified bapta which can be readily derivatized to produce fura-2 analogs with a variety of new properties. The modifications do not affect the chromophore and have little impact on the spectral and metal binding properties of the indicator. One of these new derivatives known as FPE3 is a zwitterionic analog of fura-2 that can be loaded into cells as an acetoxymethyl ester and whose retention in cells is much improved. The improved retention of FPE3 is important for both cuvettebased measurements of cell suspensions and for calcium imaging.


1987 ◽  
Vol 58 (02) ◽  
pp. 737-743 ◽  
Author(s):  
Frarnçois Lanza ◽  
Alain Beretz ◽  
Martial Kubina ◽  
Jean-Pierre Cazenave

SummaryIncorporation into human platelets of the calcium fluorescent indicators quin2 or fura-2 at low concentrations used to measure intracellular free calcium leads to the potentiation of the effects of agonists on platelets. This was shown by increased aggregatory and secretory responses of quin2 or fura-2 loaded platelets after stimulation with ADP, PAP and with low concentrations of thrombin, collagen, the endoperoxide analog U-46619 and the calcium ionophore A 23187. Quin2 and fura-2 mediated platelet sensitisation could be due to altered arachidonic acid metabolism since it was inhibited by prior treatment with the cydooxygenase inhibitor acetylsalicylate. In contrast, platelets loaded with higher concentrations of calcium chelators exhibited diminished aggregation responses to all aggregating agents. This latter effect was accompanied by increased fluidity of the platelet plasma membrane bilayer and by the exposure of a new pool of membranes to the outer surface of platelets, as monitored with trimethylammonium- diphenylhexatriene (TMA-DPH) in platelets loaded with the non-fluorescent calcium probe analog MAPT. In contrast, low concentrations of quin2 did not potentiate shape change of platelets activated with ADP. Thus, shape change and aggregation can be influenced separately by intracellular Ca2+ chelators. We conclude that platelet responses are altered by the incorporation of intracellular calcium chelators at concentrations used to monitor intracellular calcium changes.


1997 ◽  
Vol 77 (02) ◽  
pp. 376-382 ◽  
Author(s):  
Bruce Lages ◽  
Harvey J Weiss

SummaryThe possible involvement of secreted platelet substances in agonist- induced [Ca2+]i increases was investigated by comparing these increases in aspirin-treated, fura-2-loaded normal platelets and platelets from patients with storage pool deficiencies (SPD). In the presence and absence of extracellular calcium, the [Ca2+]i response induced by 10 µM ADP, but not those induced by 0.1 unit/ml thrombin, 3.3 µM U46619, or 20 µM serotonin, was significantly greater in SPD platelets than in normal platelets, and was increased to the greatest extent in SPD patients with Hermansky-Pudlak syndrome (HPS), in whom the dense granule deficiencies are the most severe. Pre-incubation of SPD-HPS and normal platelets with 0.005-5 µM ADP produced a dose-dependent inhibition of the [Ca2+]i response induced by 10 µ M ADP, but did not alter the [Ca2+]i increases induced by thrombin or U46619. Within a limited range of ADP concentrations, the dose-inhibition curve of the [Ca2+]i response to 10 µM ADP was significantly shifted to the right in SPD-HPS platelets, indicating that pre-incubation with greater amounts of ADP were required to achieve the same extent of inhibition as in normal platelets. These results are consistent with a hypothesis that the smaller ADP-induced [Ca2+]i increases seen in normal platelets may result from prior interactions of dense granule ADP, released via leakage or low levels of activation, with membrane ADP receptors, causing receptor desensitization. Addition of apyrase to platelet-rich plasma prior to fura-2 loading increased the ADP-induced [Ca2+]i response in both normal and SPD-HPS platelets, suggesting that some release of ADP derived from both dense granule and non-granular sources occurs during in vitro fura-2 loading and platelet washing procedures. However, this [Ca2+]i response was also greater in SPD-HPS platelets when blood was collected with minimal manipulation directly into anticoagulant containing apyrase, raising the possibility that release of dense granule ADP resulting in receptor desensitization may also occur in vivo. Thus, in addition to enhancing platelet activation, dense granule ADP could also act to limit the ADP-mediated reactivity of platelets exposed in vivo to low levels of stimulation.


1993 ◽  
Vol 69 (6) ◽  
pp. 1940-1947 ◽  
Author(s):  
L. D. Rhines ◽  
P. G. Sokolove ◽  
J. Flores ◽  
D. W. Tank ◽  
A. Gelperin

1. The olfactory processing network in the procerebral (PC) lobe of the terrestrial mollusk Limax maximus exhibits a coherent oscillation of local field potential that is modulated by odor input. To understand the cellular basis of this oscillation, we developed a cell culture preparation of isolated PC neurons and studied the responses of isolated cells to stimulation with neurotransmitters known to be present in the PC lobe. 2. The distribution of PC soma diameters suggests at least two different populations of neurons. Approximately 95% of isolated cells had soma diameters of 7-8 microns, with the remaining cells having larger diameters (10-15 microns). 3. Extracellular measurements of action potentials and optical measurements of intracellular calcium concentrations in fura-2-loaded cells were made. Serotonin and dopamine excited PC neurons and promoted transitions from steady to bursty activity. Both amines elicited increases in intracellular calcium, presumably concomitant with the increase in action-potential frequency. 4. Glutamate suppressed action-potential firing and reduced intracellular calcium. This effect was seen most clearly when glutamate was applied to cells excited by high potassium medium. Quisqualate is an effective glutamate agonist in this system, whereas kainate is not. 5. Combined with anatomic and biochemical data and with studies of the effects of these neurotransmitters on the oscillating local field potential of the intact PC network, the data from isolated PC neurons are consistent with the hypothesis that dopamine and serotonin modulate network dynamics, whereas glutamate is involved in generating the basic oscillation of local field potential in the PC. 6. The optical studies of fura-2-loaded cells showed that several treatments that increase the rate of action-potential production lead to elevations in intracellular calcium. Optical studies of intracellular calcium may be useful for multisite measurements of activity in the intact, oscillating PC lobe network.


1987 ◽  
Author(s):  
C T Poll ◽  
J Westwick

Fura 2 is one of a recently-introduced family of Ca++ indicators with improved fluorescent properties compared to quin 2 (Grynkiewicz et al 1985). This study has examined the role of [Ca++]i in thrombin-induced dense granule release using prostacyclin-washed human platelets loaded with either thedense granule marker 14C-5HT (5HT) alone or with 5HT together with quin 2 ([quin2]i = 0.8mM) or fura 2 ([fura 2]i 20-30µM). In the presence of ImM extracellular calcium concentration ([Ca++]i) the [Ca++]e in quin 2 and fura 2 loaded platelets was 93±2 (n=10 experiments) and 133±0.3nM (n=12 experiments) respectively. In either quin 2 or fura 2 loaded platelets suspended in the presence of ImM [Ca++]e, thrombin (0.23-23.InM) promoted a rapid (in secs)concentration-dependent elevation of [Ca++]i from basal values to levels l-2µM, together with a parallel release of dense granules almost identical to that obtained with thrombin in non dye loaded platelets. In fura 2 loaded cells, removal of [Ca++]e inhibited the elevation of [Ca++]i induced by a sub-maximal concentration of thrombin (0.77nM) by 43+5% (n=4) but interestingly had no significant effect (p<0.05) on the rise in [Ca++]i elicited by low thrombin doses (0.231nM). Neither did lowering [Ca++]e inhibit the release of 5HT evoked by thrombin ( 0.231-23.InM) from either fura 2 loaded or non dye loaded platelets. In contrast, in quin 2 loaded platelets, removal of [Ca++]e inhibited the thrombin (0.231-23.InM) stimulated rise in [Ca++]i-by 90% and the 5HT release response to either low (0.231nM), sub-maximal (0.77nM) or maximal (23.InM) thrombin by 100% (n=4), 87+2°/o (n=6)and 2+l°/o (n=4) respectively. Fura 2 but not quin 2 loaded cells suspended in ImM [Ca++]e exhibited a Ca++ response to thrombin concentrations >2.31nM which could be separated into a rapid phasic component and a more sustained 'tonic' like component inhibitable by removal of [Ca++]e or by addition of ImM Ni++ . These data suggest the use of fura 2 rather than quin 2 for investigating stimulus response coupling in platelets, particularly when [Ca++]e is less than physiological. We thank the British Heart Foundation and Ciba-Geigy USA for financial support.


1991 ◽  
Vol 635 (1 Calcium Entry) ◽  
pp. 416-420 ◽  
Author(s):  
A. HERNANDEZ-CRUZ ◽  
F. SALAF ◽  
J. A. CONNOR
Keyword(s):  

2003 ◽  
Vol 99 (3) ◽  
pp. 666-677 ◽  
Author(s):  
Takashi Akata ◽  
Tomoo Kanna ◽  
Jun Yoshino ◽  
Shosuke Takahashi

Background Isoflurane has been shown to directly inhibit vascular reactivity. However, less information is available regarding its underlying mechanisms in systemic resistance arteries. Methods Endothelium-denuded smooth muscle strips were prepared from rat mesenteric resistance arteries. Isometric force and intracellular Ca2+ concentration ([Ca2+]i) were measured simultaneously in the fura-2-loaded strips, whereas only the force was measured in the beta-escin membrane-permeabilized strips. Results Isoflurane (3-5%) inhibited the increases in both [Ca2+]i and force induced by either norepinephrine (0.5 microM) or KCl (40 mM). These inhibitions were similarly observed after depletion of intracellular Ca2+ stores by ryanodine. Regardless of the presence of ryanodine, after washout of isoflurane, its inhibition of the norepinephrine response (both [Ca2+]i and force) was significantly prolonged, whereas that of the KCl response was quickly restored. In the ryanodine-treated strips, the norepinephrine- and KCl-induced increases in [Ca2+]i were both eliminated by nifedipine, a voltage-gated Ca2+ channel blocker, whereas only the former was inhibited by niflumic acid, a Ca2+-activated Cl- channel blocker. Isoflurane caused a rightward shift of the Ca2+-force relation only in the fura-2-loaded strips but not in the beta-escin-permeabilized strips. Conclusions In mesenteric resistance arteries, isoflurane depresses vascular smooth muscle reactivity by directly inhibiting both Ca2+ mobilization and myofilament Ca2+ sensitivity. Isoflurane inhibits both norepinephrine- and KCl-induced voltage-gated Ca2+ influx. During stimulation with norepinephrine, isoflurane may prevent activation of Ca2+-activated Cl- channels and thereby inhibit voltage-gated Ca2+ influx in a prolonged manner. The presence of the plasma membrane appears essential for its inhibition of the myofilament Ca2+ sensitivity.


1990 ◽  
Vol 54 (1) ◽  
pp. 278-287 ◽  
Author(s):  
Jonathan R. Monck ◽  
Robert E. Williamson ◽  
Ivo Rogulja ◽  
Steven J. Fluharty ◽  
John R. Williamson

1993 ◽  
Vol 1148 (1) ◽  
pp. 152-156 ◽  
Author(s):  
Virgilio L. Lew ◽  
Zipora Etzion ◽  
Robert M. Bookchin ◽  
Rui daCosta ◽  
Heikki Väänänen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document