dense granule secretion
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 13)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Vol 10 (20) ◽  
pp. 4743
Author(s):  
Preeti Kumari Chaudhary ◽  
Sanggu Kim ◽  
Soochong Kim

Arrestins in concert with GPCR kinases (GRKs) function in G protein-coupled receptor (GPCR) desensitization in various cells. Therefore, we characterized the functional differences of arrestin3 versus arrestin2 in the regulation of GPCR signaling and its desensitization in platelets using mice lacking arrestin3 and arrestin2. In contrast to arrestin2, platelet aggregation and dense granule secretion induced by 2-MeSADP, U46619, thrombin, and AYPGKF were significantly potentiated in arrestin3-deficient platelets compared to wild-type (WT) platelets, while non-GPCR agonist CRP-induced platelet aggregation and secretion were not affected. Surprisingly, in contrast to GRK6, platelet aggregation induced by the co-stimulation of serotonin and epinephrine was significantly potentiated in arrestin3-deficient platelets, suggesting the central role of arrestin3 in general GPCR desensitization in platelets. In addition, the second challenge of ADP and AYPGKF restored platelet aggregation in arrestin3-deficient platelets but failed to do so in WT and arrestin2-deficient platelets, confirming that arrestin3 contributes to GPCR desensitization. Furthermore, ADP- and AYPGKF-induced Akt and ERK phosphorylation were significantly increased in arrestin3-deficient platelets. Finally, we found that arrestin3 is critical for thrombus formation in vivo. In conclusion, arrestin3, not arrestin2, plays a central role in the regulation of platelet functional responses and thrombus formation through general GPCR desensitization in platelets.


Haematologica ◽  
2021 ◽  
Author(s):  
Li Li ◽  
Jiawei Zhou ◽  
Shuai Wang ◽  
Lei Jiang ◽  
Xiaoyan Chen ◽  
...  

Platelet hyperreactivity and increased atherothrombotic risk are specifically associated with dyslipidemia. Peroxisome proliferator-activated receptor alpha (PPARα) is an important regulator of lipid metabolism. It was suggested to affect both thrombosis and hemostasis, yet the underlying mechanisms are not well understood. In this study, the role and mechanism of PPARα in platelet activation and thrombosis related to dyslipidemia were examined. Employing mice with deletion of PPARα (Pparα -/-), we demonstrated that PPARα is required for platelet activation and thrombus formation. The effect of PPARα is critically dependent on platelet dense granule secretion, and is contributed by p38MAPK/Akt, fatty acid β- oxidation, and NAD(P)H oxidase (NOX) pathways. Importantly, PPARα and the associated pathways mediated a prothrombotic state induced by high-fat diet (HFD) and platelet hyperactivity provoked by oxidized low density lipoproteins (oxLDL). Platelet reactivities were positively correlated with the expression levels of PPARα, as revealed by data from wild-type (WT), chimeric (Pparα +/-), and Pparα -/- mice. This positive correlation was recapitulated in platelets from hyperlipidemic patients. In a lipid-treated megakaryocytic cell line, lipid-induced reactive oxygen species (ROS)-NF-κB pathway was revealed to upregulate platelet PPARα in hyperlipidemia. These data suggested platelet PPARα critically mediates platelet activation and contributes to prothrombotic status under hyperlipidemia.


2021 ◽  
Author(s):  
Anastasia A Masalceva ◽  
Valeriia N Kaneva ◽  
Mikhail A Panteleev ◽  
Fazoil Ataullahanov ◽  
Vitaly Volpert ◽  
...  

Platelet accumulation at the site of vascular injury is regulated by soluble platelet agonists, which induce various types of platelet responses, including integrin activation and granule secretion. The interplay between local biochemical cues, mechanical interactions between platelets and macroscopic thrombus dynamics is poorly understood. Here we describe a novel computational model of microvascular thrombus formation for detailed analysis of thrombus mechanics. Adopting a previously developed two-dimensional particle-based model focused on the thrombus shell formation, we revise it to introduce platelet agonists. Blood flow is simulated via computational fluid dynamics approach. In order to model soluble platelet activators, we apply Langevin dynamics to a large number of non-dimensional virtual particles. Taking advantage of the available data on platelet dense granule secretion kinetics, we model platelet degranulation as a stochastic agonist-dependent process. The new model qualitatively reproduces enhanced thrombus formation due to granule secretion in line with in vivo findings and provides a mechanism for thrombin confinement at the early stages of aggregate formation. Our calculations also predict that release of dense granules results in additional mechanical stabilization of the inner layers of the thrombus. Distribution of the inter-platelet forces throughout the aggregate reveals multiple weak spots in the outer regions of thrombus, which are expected to result in mechanical disruptions at the later stages of thrombus formation.


2021 ◽  
Vol 202 ◽  
pp. 67-73
Author(s):  
Shaji Abraham ◽  
Lin Ma ◽  
Xianguo Kong ◽  
Shayan Askari ◽  
Leonard C. Edelstein ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 217
Author(s):  
Daniel N. A. Tagoe ◽  
Allison A. Drozda ◽  
Julia A. Falco ◽  
Tyler J. Bechtel ◽  
Eranthie Weerapana ◽  
...  

The host cell invasion process of apicomplexan parasites like Toxoplasma gondii is facilitated by sequential exocytosis of the microneme, rhoptry and dense granule organelles. Exocytosis is facilitated by a double C2 domain (DOC2) protein family. This class of C2 domains is derived from an ancestral calcium (Ca2+) binding archetype, although this feature is optional in extant C2 domains. DOC2 domains provide combinatorial power to the C2 domain, which is further enhanced in ferlins that harbor 5–7 C2 domains. Ca2+ conditionally engages the C2 domain with lipids, membranes, and/or proteins to facilitating vesicular trafficking and membrane fusion. The widely conserved T. gondii ferlins 1 (FER1) and 2 (FER2) are responsible for microneme and rhoptry exocytosis, respectively, whereas an unconventional TgDOC2 is essential for microneme exocytosis. The general role of ferlins in endolysosmal pathways is consistent with the repurposed apicomplexan endosomal pathways in lineage specific secretory organelles. Ferlins can facilitate membrane fusion without SNAREs, again pertinent to the Apicomplexa. How temporal raises in Ca2+ combined with spatiotemporally available membrane lipids and post-translational modifications mesh to facilitate sequential exocytosis events is discussed. In addition, new data on cross-talk between secretion events together with the identification of a new microneme protein, MIC21, is presented.


2021 ◽  
Vol 5 (3) ◽  
pp. 674-686
Author(s):  
Tony G. Walsh ◽  
Yong Li ◽  
Christopher M. Williams ◽  
Elizabeth W. Aitken ◽  
Robert K. Andrews ◽  
...  

Abstract The exocyst is an octameric complex comprising 8 distinct protein subunits, exocyst complex components (EXOC) 1 to 8. It has an established role in tethering secretory vesicles to the plasma membrane, but its relevance to platelet granule secretion and function remains to be determined. Here, EXOC3 conditional knockout (KO) mice in the megakaryocyte/platelet lineage were generated to assess exocyst function in platelets. Significant defects in platelet aggregation, integrin activation, α-granule (P-selectin and platelet factor 4), dense granule, and lysosomal granule secretion were detected in EXOC3 KO platelets after treatment with a glycoprotein VI (GPVI)-selective agonist, collagen-related peptide (CRP). Except for P-selectin exposure, these defects were completely recovered by maximal CRP concentrations. GPVI surface levels were also significantly decreased by 14.5% in KO platelets, whereas defects in proximal GPVI signaling responses, Syk and LAT phosphorylation, and calcium mobilization were also detected, implying an indirect mechanism for these recoverable defects due to decreased surface GPVI. Paradoxically, dense granule secretion, integrin activation, and changes in surface expression of integrin αIIb (CD41) were significantly increased in KO platelets after protease-activated receptor 4 activation, but calcium responses were unaltered. Elevated integrin activation responses were completely suppressed with a P2Y12 receptor antagonist, suggesting enhanced dense granule secretion of adenosine 5′-diphosphate as a critical mediator of these responses. Finally, arterial thrombosis was significantly accelerated in KO mice, which also displayed improved hemostasis determined by reduced tail bleeding times. These findings reveal a regulatory role for the exocyst in controlling critical aspects of platelet function pertinent to thrombosis and hemostasis.


Author(s):  
Joseph H Cho ◽  
Geoffrey D Wool ◽  
Melissa Y Tjota ◽  
Jocelyn Gutierrez ◽  
Krzysztof Mikrut ◽  
...  

Abstract Objectives This study was undertaken to explore the feasibility of assessing platelet dense granule release in response to platelet stimuli, using less than 1 mL of whole blood (WB). Methods Optimization of the luciferin-luciferase (LL) assay for ATP release, together with additional modifications, was applied to 1:10 diluted WB. Results LL assay optimization using nonstirred 1:10 diluted WB resulted in dense granule ATP release in response to thrombin receptor-activating peptide (TRAP) of similar magnitude to that observed using stirred platelet-rich plasma. Stirring of the 1:10 diluted WB restored collagen-induced dense granule secretion. Addition of lyophilized, formalin-fixed platelets, together with stirring, restored dense granule secretion responsiveness to ADP. TRAP, ADP, and collagen all stimulated ATP release in 1:10 diluted WB under the optimized conditions of this study at levels close to those observed using platelet-rich plasma. Blood sample reconstitution experiments offer hope that this assay may prove robust down to WB platelet counts as low as 50 × 103/μL. Conclusions Platelet dense granule release in response to a number of classic stimuli, including ADP, was accomplished from less than 1 mL WB with minimal specimen processing, using widely available reagents and instrumentation.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Mazhar Mushtaq ◽  
Uh-Hyun Kim

Background and Objectives. The primary function of platelets is to prevent bleeding. The use of UV-C light in the treatment of platelets has become a valuable method for preserving the efficacy of platelet concentrates in blood banks. However, its deleterious effect remains, such as the activation of platelets, thus causing the platelets to lose their physiological function. In this study, we intended to demonstrate the impact of UV-C on platelets and how the use of glutamine could mitigate the loss of physiological function of the platelets caused by UV-C. Materials and Methods. This study was conducted using mouse platelets. We assessed calcium signaling using Fura-2 AM incubation and dense granule secretion of the platelets using luminescence assay by measuring ATP. At the molecular level, the activation of integrin using PAC-1 antibody was analyzed. Phosphorylation of immune-precipitated cPLA2 was assessed using a specific antibody. All the experiments were carried out with or without glutamine in the presence of UV-C. Positive and negative controls were used in all experiments to validate the findings. Results. We have demonstrated that physiological and biochemical damage arises as a result of the exposure of platelet concentrate to UV-C and that the use of glutamine could alleviate this damage. Various experiments, thrombus formation, integrin activation, and phosphorylation of cPLA2 were preserved using 50 mM of glutamine in the presence of UV-C, which reduces 50% of platelet viability. Conclusions. Our study demonstrates that the storage of platelet concentrates under the UV-C activates their physiological process and renders them to the thrombus formation, hence decreasing their viability. The presence of a moderate amount of glutamine can alleviate the toxic effect of UV-C, and platelet concentrates could be kept viable for a long time.


2020 ◽  
Vol 21 (21) ◽  
pp. 8239
Author(s):  
Anastasia Kyselova ◽  
Mauro Siragusa ◽  
Julian Anthes ◽  
Fiorella Andrea Solari ◽  
Stefan Loroch ◽  
...  

Diabetes is associated with platelet hyper-reactivity and enhanced risk of thrombosis development. Here we compared protein expression in platelets from healthy donors and diabetic patients to identify differentially expressed proteins and their possible function in platelet activation. Mass spectrometry analyses identified cyclin Y (CCNY) in platelets and its reduced expression in platelets from diabetic patients, a phenomenon that could be attributed to the increased activity of calpains. To determine the role of CCNY in platelets, mice globally lacking the protein were studied. CCNY-/- mice demonstrated lower numbers of circulating platelets but platelet responsiveness to thrombin and a thromboxane A2 analogue were comparable with that of wild-type mice, as was agonist-induced α and dense granule secretion. CCNY-deficient platelets demonstrated enhanced adhesion to fibronectin and collagen as well as an attenuated spreading and clot retraction, indicating an alteration in “outside in” integrin signalling. This phenotype was accompanied by a significant reduction in the agonist-induced tyrosine phosphorylation of β3 integrin. Taken together we have shown that CCNY is present in anucleated platelets where it is involved in the regulation of integrin-mediated outside in signalling associated with thrombin stimulation.


2020 ◽  
Vol 117 (39) ◽  
pp. 24316-24325 ◽  
Author(s):  
Shuchi Gupta ◽  
Christoph Konradt ◽  
Adam Corken ◽  
Jerry Ware ◽  
Bernhard Nieswandt ◽  
...  

Platelets are best known for their vasoprotective responses to injury and inflammation. Here, we have asked whether they also support vascular integrity when neither injury nor inflammation is present. Changes in vascular barrier function in dermal and meningeal vessels were measured in real time in mouse models using the differential extravasation of fluorescent tracers as a biomarker. Severe thrombocytopenia produced by two distinct methods caused increased extravasation of 40-kDa dextran from capillaries and postcapillary venules but had no effect on extravasation of 70-kDa dextran or albumin. This reduction in barrier function required more than 4 h to emerge after thrombocytopenia was established, reverting to normal as the platelet count recovered. Barrier dysfunction was also observed in mice that lacked platelet-dense granules, dense granule secretion machinery, glycoprotein (GP) VI, or the GPVI signaling effector phospholipase C (PLC) γ2. It did not occur in mice lacking α-granules, C type lectin receptor-2 (CLEC-2), or protease activated receptor 4 (PAR4). Notably, although both meningeal and dermal vessels were affected, intracerebral vessels, which are known for their tighter junctions between endothelial cells, were not. Collectively, these observations 1) highlight a role for platelets in maintaining vascular homeostasis in the absence of injury or inflammation, 2) provide a sensitive biomarker for detecting changes in platelet-dependent barrier function, 3) identify which platelet processes are required, and 4) suggest that the absence of competent platelets causes changes in the vessel wall itself, accounting for the time required for dysfunction to emerge.


Sign in / Sign up

Export Citation Format

Share Document