Machine fault diagnosis based on multi-head deep learning network

Author(s):  
Qidong Lu ◽  
Yu Qin ◽  
Yingying Li ◽  
Zhiliang Qin ◽  
Xiaowei Liu
2020 ◽  
Vol 19 (6) ◽  
pp. 1745-1763 ◽  
Author(s):  
Xiaoli Zhao ◽  
Minping Jia

Generally, the health conditions of rotating machinery are complicated and changeable. Meanwhile, its fault labeled information is mostly unknown. Therefore, it is man-sized to automatically capture the useful fault labeled information from the monitoring raw vibration signals. That is to say, the intelligent unsupervised learning approach has a significant influence on fault diagnosis of rotating machinery. In this study, a span-new unsupervised deep learning network can be constructed based on the proposed feature extractor (L12 sparse filtering (L12SF)) and the designed clustering extractor (Weighted Euclidean Affinity Propagation) for resolving the issue that the acquisition of fault sample labeled information is burdensome, yet costly. Naturally, the novel intelligent fault diagnosis method of rotating machinery based on unsupervised deep learning network is first presented in this study. Thereinto, the proposed unsupervised deep learning network consists of two layers of unsupervised feature extractor (L12SF) and one layer of unsupervised clustering (Weighted Euclidean Affinity Propagation). L12SF can improve the regularization performance of sparse filtering, and Weighted Euclidean Affinity Propagation can get rid of the traditional Euclidean distance in affinity propagation that cannot highlight the contribution of different features in fault clustering. To make a long story short, the frequency spectrum signals are first entered into the constructed unsupervised deep learning network for fault feature representation; afterward, the unsupervised feature learning and unsupervised fault classification of rotating machinery can be implemented. The superiority of the proposed algorithms and method is validated by two cases of rolling bearing fault dataset. Ultimately, the proposed unsupervised fault diagnosis method can provide a theoretical basis for the development of intelligent unsupervised fault diagnosis technology for rotating machinery.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Zhipeng Dong ◽  
Yucheng Liu ◽  
Jianshe Kang ◽  
Shaohui Zhang

Deep learning is widely used in fault diagnosis of mechanical equipment and has achieved good results. However, these deep learning models require a large number of labeled samples for training, which is difficult to obtain enough labeled samples in the actual production process. However, it is easier to obtain unlabeled samples in the industrial environment. To overcome this problem, this paper proposes a novel method to generative enough label samples for training deep learning models. Unlike the generative adversarial networks, which required complex computing time, the calculation of the proposed novel generative method is simple and effective. First, we calculate the Euclidean distance between the training sample and the test sample; then, the weight coefficient between the training sample and the test sample is settled to generate pseudosamples; finally, combine with the pseudosamples, the deep learning method is training for machine fault diagnosis. In order to verify the effectiveness of the proposed method, two experiment datasets with planetary gearboxes and wind gearboxes are carried out with different activation functions. Experimental results show that the proposed method is effective for most activation function models.


Sign in / Sign up

Export Citation Format

Share Document