scholarly journals A Novel Generative Method for Machine Fault Diagnosis

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Zhipeng Dong ◽  
Yucheng Liu ◽  
Jianshe Kang ◽  
Shaohui Zhang

Deep learning is widely used in fault diagnosis of mechanical equipment and has achieved good results. However, these deep learning models require a large number of labeled samples for training, which is difficult to obtain enough labeled samples in the actual production process. However, it is easier to obtain unlabeled samples in the industrial environment. To overcome this problem, this paper proposes a novel method to generative enough label samples for training deep learning models. Unlike the generative adversarial networks, which required complex computing time, the calculation of the proposed novel generative method is simple and effective. First, we calculate the Euclidean distance between the training sample and the test sample; then, the weight coefficient between the training sample and the test sample is settled to generate pseudosamples; finally, combine with the pseudosamples, the deep learning method is training for machine fault diagnosis. In order to verify the effectiveness of the proposed method, two experiment datasets with planetary gearboxes and wind gearboxes are carried out with different activation functions. Experimental results show that the proposed method is effective for most activation function models.

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1161
Author(s):  
Kuo-Hao Fanchiang ◽  
Yen-Chih Huang ◽  
Cheng-Chien Kuo

The safety of electric power networks depends on the health of the transformer. However, once a variety of transformer failure occurs, it will not only reduce the reliability of the power system but also cause major accidents and huge economic losses. Until now, many diagnosis methods have been proposed to monitor the operation of the transformer. Most of these methods cannot be detected and diagnosed online and are prone to noise interference and high maintenance cost that will cause obstacles to the real-time monitoring system of the transformer. This paper presents a full-time online fault monitoring system for cast-resin transformer and proposes an overheating fault diagnosis method based on infrared thermography (IRT) images. First, the normal and fault IRT images of the cast-resin transformer are collected by the proposed thermal camera monitoring system. Next is the model training for the Wasserstein Autoencoder Reconstruction (WAR) model and the Differential Image Classification (DIC) model. The differential image can be acquired by the calculation of pixel-wise absolute difference between real images and regenerated images. Finally, in the test phase, the well-trained WAR and DIC models are connected in series to form a module for fault diagnosis. Compared with the existing deep learning algorithms, the experimental results demonstrate the great advantages of the proposed model, which can obtain the comprehensive performance with lightweight, small storage size, rapid inference time and adequate diagnostic accuracy.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 532
Author(s):  
Mohand Djeziri ◽  
Marc Bendahan

Fault diagnosis and failure prognosis aim to reduce downtime of the systems and to optimise their performance by replacing preventive and corrective maintenance strategies with predictive or conditional ones [...]


Sign in / Sign up

Export Citation Format

Share Document