Monitoring cancer cell surface receptor expression during anti-angiogenesis therapy in vivo

Author(s):  
Boyu Meng ◽  
Rendall R. Strawbridge ◽  
Kenneth Tichauer ◽  
Kimberley S. Samkoe ◽  
Scott C. Davis
2007 ◽  
Vol 129 (2) ◽  
pp. 268-269 ◽  
Author(s):  
Siwarutt Boonyarattanakalin ◽  
Jianfang Hu ◽  
Sheryl A. Dykstra-Rummel ◽  
Avery August ◽  
Blake R. Peterson

2018 ◽  
Vol 19 (10) ◽  
pp. 2912 ◽  
Author(s):  
Girdhari Rijal ◽  
Jing Wang ◽  
Ilhan Yu ◽  
David Gang ◽  
Roland Chen ◽  
...  

Porcine mammary fatty tissues represent an abundant source of natural biomaterial for generation of breast-specific extracellular matrix (ECM). Here we report the extraction of total ECM proteins from pig breast fatty tissues, the fabrication of hydrogel and porous scaffolds from the extracted ECM proteins, the structural properties of the scaffolds (tissue matrix scaffold, TMS), and the applications of the hydrogel in human mammary epithelial cell spatial cultures for cell surface receptor expression, metabolomics characterization, acini formation, proliferation, migration between different scaffolding compartments, and in vivo tumor formation. This model system provides an additional option for studying human breast diseases such as breast cancer.


Immunology ◽  
2018 ◽  
Vol 156 (2) ◽  
pp. 136-146 ◽  
Author(s):  
Diana M. Elizondo ◽  
Temesgen E. Andargie ◽  
Naomi L. Haddock ◽  
Thomas A. Boddie ◽  
Michael W. Lipscomb

Endocrinology ◽  
2002 ◽  
Vol 143 (9) ◽  
pp. 3207-3210 ◽  
Author(s):  
Hyunjung Lim ◽  
Sudhansu K. Dey

Abstract Prostacylin (PGI2), one of the major prostaglandins, is derived from arachidonic acid by the action of the cyclooxygenase (COX) system coupled to PGI2 synthase (PGIS). The presence of the COX-2/PGIS at the nuclear and endoplasmic reticular membrane suggests differential signaling pathways of PGI2 actions involving both cell surface and nuclear receptors. Although the signaling of PGI2 via its cell surface receptor, prostacyclin receptor (IP), is well documented in vascular biology, its action via nuclear receptors in other physiological responses is gradually being more appreciated. Peroxisomal proliferator-activated receptors (PPARs), PPARα, PPARγ, and PPARδ, though initially cloned as a family of orphan receptors, are now known for their ligand promiscuity. The ligands range from free fatty acids and their derivatives produced by the cyclooxygenase or lipoxygenase pathway to certain hypolipidemic drugs. The predisposition of PPARs to use a wide spectrum of ligands is well explained by their unusually large ligand-binding pocket. The promiscuous ligand usage by PPARs is also reflected by their involvement in various pathophysiological events. Several recent independent reports show that endogenously produced PGI2 indeed activates PPARδ in vivo, indicating that a novel signaling mechanism for this abundant eicosanoid is operative in certain systems. This review attempts to cover recent developments in nuclear actions of PGI2 in diverse biological functions.


2000 ◽  
Vol 48 (10) ◽  
pp. 569-578 ◽  
Author(s):  
Marina Y. Pushkareva ◽  
Sharon L. Wannberg ◽  
Andrew S. Janoff ◽  
Eric Mayhew

Sign in / Sign up

Export Citation Format

Share Document