Absolute quantum advantage in microscopy

Author(s):  
Warwick P. Bowen ◽  
Catxere A. Casacio ◽  
Lars S. Madsen ◽  
Alex Terrasson ◽  
Muhammad Waleed ◽  
...  
Keyword(s):  
1982 ◽  
Vol 47 (8) ◽  
pp. 2061-2068 ◽  
Author(s):  
Jan Sýkora ◽  
Mária Jakubcová ◽  
Zuzana Cvengrošová

In the photolysis of copper(II)-chloride-alcohol-acetonitrile systems (cCu = 1 mmol l-1, copper(II)-to-chloride molar ratio 1 : 2 to 1 : 8, 10% (v/v) alcohol), Cu(II) is reduced to Cu(I), and methanol, ethanol, 1-propanol, or 1-butanol is oxidized to the corresponding aldehyde, 2-propanol to acetone. In the case of 1-propanol and 1-butanol, chlorinated aldehydes are formed in addition too. The measured quantum yields of the photoreduction of Cu(II) to Cu(I) lay in the range of ΦCu(I) = 4.5 to 40 mmol einstein-1, the absolute quantum yields of the alcohol oxidation products were 2.3 to 47 mmol einstein-1. The photoactive components are chlorocupric complexes [CuClx](2-x)+ (x = 1-4). The presence of complexes with a higher number of chloroligands in the coordination sphere (x = 3, 4) brings about a decrease in the Cu(II) photoreduction rate. The decrease in the photoreduction rate observed in the presence of dioxygen is explained in terms of re-oxidation of copper(I) by the latter, resulting in an increase in the concentration of the photochemically active cupric complexes. The catalytic aspects of the systems in question are discussed with respect to this effect.


2021 ◽  
Author(s):  
Waldemar Herr ◽  
Nina Heine ◽  
Marat Musakaev ◽  
Sven Abend ◽  
Ludger Timmen ◽  
...  

<p>The transportable Quantum Gravimeter QG-1 is designed to determine the local gravity to the nm/s² level of uncertainty. It relies on the interferometric interrogation of magnetically collimated Bose-Einstein condensates in a transportable setup consisting of a sensor head and an electronics supply unit.<br>In this contibution we introduce the measurement concept and discuss it's impact on the measurement uncertainty. We are reporting on the first gravity data taken with the device over the course of three days thereby validating the operability and the measurement concept applied in QG-1.<br>We acknowledge financial support from "Niedersachsisches Vorab" through "Förderung von Wissenschaft und Technik in Forschung und Lehre" for the initial funding of research in the new DLR-SI Institute. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC-2123 QuantumFrontiers - 390837967 and under Project-ID 434617780 - SFB 1464.</p>


2014 ◽  
Vol 69 (2) ◽  
pp. 248-254 ◽  
Author(s):  
Ana Kuzmanoski ◽  
Claus Feldmann

Tb2(bpdc)3 and Eu2(bpdc)3 nanoparticles (bpdc: 2,2ʹ-bipyridine-4,4ʹ-dicarboxylate) have been prepared via straightforward precipitation from aqueous solution. The nanoparticles exhibit mean diameters of 41(5) nm (Tb2(bpdc)3) and 56(4) nm (Eu2(bpdc)3) and show a very good colloidal stability in aqueous suspension. Particle size and chemical composition have been characterized based on electron microscopy, X-ray diffraction, infrared spectroscopy and thermogravimetry. Photoluminescence validates an efficient excitation of Tb3+/Eu3+ via the bpdc ligand as an antenna that leads to intense characteristic green and red emissions. The absolute quantum yields of Tb2(bpdc)3 and Eu2(bpdc)3 have been determined at 28 and 12%, respectively. Although rare-earth metal-based photoluminescence is typically quenched in water due to vibronic loss processes (v(O-H)), here, the antenna effect and the shielding of the metal centers via the bpdc ligand are very efficient, allowing for an intense green and red emission of the Tb2(bpdc)3 and Eu2(bpdc)3 nanoparticles even in aqueous suspension.


2021 ◽  
Author(s):  
Daniele Carbone ◽  
Laura Antoni-Micollier ◽  
Filippo Greco ◽  
Jean Lautier-Gaud ◽  
Danilo Contrafatto ◽  
...  

<p>The NEWTON-g project [1] proposes a paradigm shift in terrain gravimetry to overcome the limitations imposed by currently available instrumentation. The project targets the development of an innovative gravity imager and the field-test of the new instrumentation through the deployment at Mount Etna volcano (Italy). The gravity imager consists in an array of MEMS-based relative gravimeters anchored on an Absolute Quantum Gravimeter [2].<br>The Absolute Quantum Gravimeter (AQG) is an industry-grade gravimeter measuring g with laser-cooled atoms [3]. Within the NEWTON-g project, an enhanced version of the AQG (AQGB03) has been developed, which is able to produce high-quality data against strong volcanic tremor at the installation site.<br>After reviewing the key principles of the AQG, we present the deployment of the AQGB03 at the Pizzi Deneri (PDN) Volcanological Observatory (North flank of Mt. Etna; 2800 m elevation; 2.5 km from the summit active craters), which was completed in summer 2020. We then show the demonstrated measurement performances of the AQG, in terms of sensitivity and stability. In particular, we report on a reproducible sensitivity to gravity at a level of 1 μGal, even during intense volcanic activity.<br>We also discuss how the time series acquired by AQGB03 at PDN compares with measurements from superconducting gravimeters already installed at Mount Etna. In particular, the significant  correlation with gravity data collected at sites 5 to 9 km away from PDN proves that effects due to bulk mass sources, likely related to volcanic processes, are predominant over possible local and/or instrumental artifacts.<br>This work demonstrates the feasibility to operate a free-falling quantum gravimeter in the field, both as a transportable turn-key device and as a drift-free monitoring device, able to provide high-quality continuous measurements under harsh environmental conditions. It paves the way to a wider use of absolute gravimetry for geophysical monitoring.</p><p>[1] www.newton-g.com</p><p>[2] D. Carbone et al., “The NEWTON-g Gravity Imager: Toward New Paradigms for Terrain Gravimetry”, Front. Earth Sci. 8:573396 (2020)</p><p>[3] V. Ménoret et al., "Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter", Nature Scientific Reports, vol. 8, 12300 (2018)</p>


Sign in / Sign up

Export Citation Format

Share Document