carbon nanodots
Recently Published Documents


TOTAL DOCUMENTS

1029
(FIVE YEARS 461)

H-INDEX

84
(FIVE YEARS 15)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 193
Author(s):  
Taotao Huo ◽  
Wenshuai Li ◽  
Dong Liang ◽  
Rongqin Huang

An ideal cancer diagnostic probe should possess precise tumor-targeted accumulation with negligible sojourn in normal tissues. Herein, tumor cell-derived carbon nanodots (C-CNDU87 and C-CNDHepG2) about 3~7 nm were prepared by a solvothermal method with stable fluorescence and negligible cytotoxicity. More interestingly, due to the differences in gene expression of cancers, C-CND structurally mimicked the corresponding precursors during carbonization in which carbon nanodots were functionalized with α-amino and carboxyl groups with different densities on their edges. With inherent homology and homing effect, C-CND were highly enriched in precursor tumor tissues. Mechanistic studies showed that under the mediation of the original configuration of α-amino and carboxyl groups, C-CND specifically bound to the large neutral amino acid transporter 1 (LAT1, overexpressed in cancer cells), achieving specific tumor fluorescence imaging. This work provided a new vision about tumor cell architecture-mimicked carbon nanodots for tumor-targeted fluorescence imaging.


Author(s):  
Nicolò Mauro ◽  
Mara Andrea Utzeri ◽  
Alice Sciortino ◽  
Fabrizio Messina ◽  
Marco Cannas ◽  
...  

2022 ◽  
pp. 131640
Author(s):  
Naveen Kumar Reddy Bogireddy ◽  
Vivechana Agarwal

2022 ◽  
pp. 107181
Author(s):  
Lingxiao Wang ◽  
Long Yu ◽  
Hongwei Ge ◽  
Yiming Bu ◽  
Mingtai Sun ◽  
...  

Author(s):  
Kyung Woo Kim ◽  
Yong Min Kwon ◽  
Sun Young Kim ◽  
Jaoon Young Hwan Kim

2021 ◽  
Vol 10 (4) ◽  
pp. 08-12
Author(s):  
C. Thevamirtha ◽  
Sherin Monichan ◽  
P. Mosae Selvakumar

Plant-based carbon materials are a high-demand source nowadays, as they are low-cost, eco-friendly, easily available, and sustainable.  Borassus flabellifer (Palmyra palm) is a gift of nature that gives numerous benefits, as all parts of the tree can be used for multiple purposes. Palmyraculture is the practice of cultivating Palmyra palms and utilizing them to live a self-reliant life in working towards sustainable development. Due to the advancement of technology, Borassus flabellifer is used to synthesize carbon materials, including hard carbon, carbon nanodots, charcoal, and activated carbon.  These carbon materials can be used in electrochemistry as anode materials, biosensing, bioimaging, catalysts, and water purification. This review mainly focuses on the carbon materials derived from the Borassus flabellifer, their applications in various fields, and further aspects that have to be considered.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Yujin Kim ◽  
Yoonsang Park ◽  
Seulgi Han ◽  
Wonchan Park ◽  
Mungu Kim ◽  
...  

The origin and classification of energy states, as well as the electronic transitions and energy transfers associated with them, have been recognized as critical factors for understanding the optical properties of carbon nanodots (CNDs). Herein, we report the synthesis of CNDs in an optimized process that allows low-temperature carbonization using ethanolamine as the major precursor and citric acid as an additive. The results obtained herein suggest that the energy states in our CNDs can be classified into four different types based on their chemical origin: carbogenic core states, surface defective states, molecular emissive states, and non-radiative trap states. Each energy state is associated with the occurrence of different types of emissions in the visible to near-infrared (NIR) range and the generation of reactive oxygen species (ROS). The potential pathways of radiative/non-radiative transitions in CNDs have been systematically studied using visible-to-NIR emission spectroscopy and fluorescence decay measurements. Furthermore, the bright photoluminescence and ROS generation of these CNDs render them suitable for in vitro imaging and photodynamic therapy applications. We believe that these new insights into the energy states of CNDs will result in significant improvements in other applications, such as photocatalysis and optoelectronics.


2021 ◽  
Author(s):  
kun zhang ◽  
Meng Ding ◽  
bingqian shan ◽  
bo peng ◽  
jiafeng zhou

The nature of interfacial state and/or bonding at heterogeneous nanoscale surface of bimetals remains elusive. For very classical probe reaction of catalytic hydride catalytic reduction of –NO2 to NH2 (herein reduction of 4-NP to 4-AP as an example), three abnormal experimental phenomena cannot be elucidated as such: 1) the hydrogen source of final product of 4-AP is originated from water solvent, rather than NaBH4 reducer; 2) reverse electron transfer between bimetals was observed, which is resisted to the normal thermaldynamic law; 3) even in the absence of any metals, for example just using carbon nanodots as supports, the reaction occurs. These observations indicates that the reduction of –NO2 groups did not follow the classical metal-centered electron and hydride transfer mechanism, i.e., Langmuir-Hinshelwood (L-H) mechanism. We herein provide strong evidence that, the catalytic hydride reduction of 4-NP to 4-AP is though a completely new surface hydrous hydroxyl specie mediated concerted electron and proton transfer process, wherein owing to the space overlapping of p orbitals in hydrous hydroxyl intermediate, an ensemble of interface states are dynamically formed, which could be alternative channels for concerted electron and proton transfer. The main role of second metal of Pt is to regulate the density of surface hydrous hydroxyl intermediate and its interactive strength with metals. This new mechanism not only answers all the abnormal experimental observations above mentioned, but also provide some new insights to water and/or hydroxyl group promoted reaction involved the activation of small molecules (CO2, CO, N2, H2O etc.) in areas of electrochemistry, energy storage and metalloenzyme catalysis.


Sign in / Sign up

Export Citation Format

Share Document