Vision-based classification of mosquito species: data augmentation by background replacement for convolutional neural network-based species classification of smashed mosquitoes

Author(s):  
Ryousuke Tsubaki ◽  
Takumi Toyoda ◽  
Kota Yoshida ◽  
Akio Nakamura
Author(s):  
C. Sothe ◽  
L. E. C. la Rosa ◽  
C. M. de Almeida ◽  
A. Gonsamo ◽  
M. B. Schimalski ◽  
...  

Abstract. The classification of tree species can significantly benefit from high spatial and spectral information acquired by unmanned aerial vehicles (UAVs) associated with advanced feature extraction and classification methods. Different from the traditional feature extraction methods, that highly depend on user’s knowledge, the convolutional neural network (CNN)-based method can automatically learn and extract the spatial-related features layer by layer. However, in order to capture significant features of the data, the CNN classifier requires a large number of training samples, which are hardly available when dealing with tree species in tropical forests. This study investigated the following topics concerning the classification of 14 tree species in a subtropical forest area of Southern Brazil: i) the performance of the CNN method associated with a previous step to increase and balance the sample set (data augmentation) for tree species classification as compared to the conventional machine learning methods support vector machine (SVM) and random forest (RF) using the original training data; ii) the performance of the SVM and RF classifiers when associated with a data augmentation step and spatial features extracted from a CNN. Results showed that the CNN classifier outperformed the conventional SVM and RF classifiers, reaching an overall accuracy (OA) of 84.37% and Kappa of 0.82. The SVM and RF had a poor accuracy with the original spectral bands (OA 62.67% and 59.24%) but presented an increase between 14% and 21% in OA when associated with a data augmentation and spatial features extracted from a CNN.


2021 ◽  
pp. 1-10
Author(s):  
Gayatri Pattnaik ◽  
Vimal K. Shrivastava ◽  
K. Parvathi

Pests are major threat to economic growth of a country. Application of pesticide is the easiest way to control the pest infection. However, excessive utilization of pesticide is hazardous to environment. The recent advances in deep learning have paved the way for early detection and improved classification of pest in tomato plants which will benefit the farmers. This paper presents a comprehensive analysis of 11 state-of-the-art deep convolutional neural network (CNN) models with three configurations: transfers learning, fine-tuning and scratch learning. The training in transfer learning and fine tuning initiates from pre-trained weights whereas random weights are used in case of scratch learning. In addition, the concept of data augmentation has been explored to improve the performance. Our dataset consists of 859 tomato pest images from 10 categories. The results demonstrate that the highest classification accuracy of 94.87% has been achieved in the transfer learning approach by DenseNet201 model with data augmentation.


2020 ◽  
Vol 10 (5) ◽  
pp. 1040-1048 ◽  
Author(s):  
Xianwei Jiang ◽  
Liang Chang ◽  
Yu-Dong Zhang

More than 35 million patients are suffering from Alzheimer’s disease and this number is growing, which puts a heavy burden on countries around the world. Early detection is of benefit, in which the deep learning can aid AD identification effectively and gain ideal results. A novel eight-layer convolutional neural network with batch normalization and dropout techniques for classification of Alzheimer’s disease was proposed. After data augmentation, the training dataset contained 7399 AD patient and 7399 HC subjects. Our eight-layer CNN-BN-DO-DA method yielded a sensitivity of 97.77%, a specificity of 97.76%, a precision of 97.79%, an accuracy of 97.76%, a F1 of 97.76%, and a MCC of 95.56% on the test set, which achieved the best performance in seven state-of-the-art approaches. The results strongly demonstrate that this method can effectively assist the clinical diagnosis of Alzheimer’s disease.


2021 ◽  
Author(s):  
Ananda Ananda ◽  
Kwun Ho Ngan ◽  
Cefa Karabag ◽  
Eduardo Alonso ◽  
Alex Ter-Sarkisov ◽  
...  

This paper investigates the classification of radiographic images with eleven convolutional neural network (CNN) architectures (GoogleNet, VGG-19, AlexNet, SqueezeNet, ResNet-18, Inception-v3, ResNet-50, VGG-16, ResNet-101, DenseNet-201 and Inception-ResNet-v2). The CNNs were used to classify a series of wrist radiographs from the Stanford Musculoskeletal Radiographs (MURA) dataset into two classes - normal and abnormal. The architectures were compared for different hyper-parameters against accuracy and Cohen's kappa coefficient. The best two results were then explored with data augmentation. Without the use of augmentation, the best results were provided by Inception-Resnet-v2 (Mean accuracy = 0.723, Mean kappa = 0.506). These were significantly improved with augmentation to Inception-Resnet-v2 (Mean accuracy = 0.857, Mean kappa = 0.703). Finally, Class Activation Mapping was applied to interpret activation of the network against the location of an anomaly in the radiographs.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5381
Author(s):  
Ananda Ananda ◽  
Kwun Ho Ngan ◽  
Cefa Karabağ ◽  
Aram Ter-Sarkisov ◽  
Eduardo Alonso ◽  
...  

This paper investigates the classification of radiographic images with eleven convolutional neural network (CNN) architectures (GoogleNet, VGG-19, AlexNet, SqueezeNet, ResNet-18, Inception-v3, ResNet-50, VGG-16, ResNet-101, DenseNet-201 and Inception-ResNet-v2). The CNNs were used to classify a series of wrist radiographs from the Stanford Musculoskeletal Radiographs (MURA) dataset into two classes—normal and abnormal. The architectures were compared for different hyper-parameters against accuracy and Cohen’s kappa coefficient. The best two results were then explored with data augmentation. Without the use of augmentation, the best results were provided by Inception-ResNet-v2 (Mean accuracy = 0.723, Mean kappa = 0.506). These were significantly improved with augmentation to Inception-ResNet-v2 (Mean accuracy = 0.857, Mean kappa = 0.703). Finally, Class Activation Mapping was applied to interpret activation of the network against the location of an anomaly in the radiographs.


Sign in / Sign up

Export Citation Format

Share Document