Time domain characteristic analysis of wind turbine tower load based on Imbalanced fault of wind wheel

Author(s):  
Hongtao Guo ◽  
Ze Li ◽  
Jing Jiang ◽  
Tao Guo ◽  
Guo Liang ◽  
...  
2015 ◽  
Vol 135 (3) ◽  
pp. 200-206 ◽  
Author(s):  
Yoki Ikeda ◽  
Naoto Nagaoka ◽  
Yoshihiro Baba

2012 ◽  
Vol 229-231 ◽  
pp. 613-616
Author(s):  
Yan Jue Gong ◽  
Yuan Yuan Zhang ◽  
Fu Zhao ◽  
Hui Yu Xiang ◽  
Chun Ling Meng ◽  
...  

As an important part of the vertical axis wind turbine, the support structure should have high strength and stiffness. This article adopts finite element method to model a kind of tower structure of the vertical axis wind turbine and carry out static and modal analysis. The static and dynamic characteristic results of tower in this paper provide reference for optimization design the support structure of wind turbine further.


2021 ◽  
pp. 107754632110075
Author(s):  
Junling Chen ◽  
Jinwei Li ◽  
Dawei Wang ◽  
Youquan Feng

The steel–concrete hybrid wind turbine tower is characterized by the concrete tubular segment at the lower part and the traditional steel tubular segment at the upper part. Because of the great change of mass and stiffness along the height of the tower at the connection of steel segment and concrete segment, its dynamic responses under seismic ground motions are significantly different from those of the traditional steel tubular wind turbine tower. Two detailed finite element models of a full steel tubular tower and a steel–concrete hybrid tower for 2.0 MW wind turbine built in the same wind farm are, respectively, developed by using the finite element software ABAQUS. The response spectrum method is applied to analyze the seismic action effects of these two towers under three different ground types. Three groups of ground motions corresponding to three ground types are used to analyze the dynamic response of the steel–concrete hybrid tower by the nonlinear time history method. The numerical results show that the seismic action effect by the response spectrum method is lower than those by the nonlinear time history method. And then it can be concluded that the response spectrum method is not suitable for calculating the seismic action effects of the steel–concrete hybrid tower directly and the time history analyses should be a necessary supplement for its seismic design. The first three modes have obvious contributions on the dynamic response of the steel–concrete hybrid tower.


Author(s):  
H. K. Jang ◽  
H. C. Kim ◽  
M. H. Kim ◽  
K. H. Kim

Numerical tools for a single floating offshore wind turbine (FOWT) have been developed by a number of researchers, while the investigation of multi-unit floating offshore wind turbines (MUFOWT) has rarely been performed. Recently, a numerical simulator was developed by TAMU to analyze the coupled dynamics of MUFOWT including multi-rotor-floater-mooring coupled effects. In the present study, the behavior of MUFOWT in time domain is described through the comparison of two load cases in maximum operational and survival conditions. A semi-submersible floater with four 2MW wind turbines, moored by eight mooring lines is selected as an example. The combination of irregular random waves, steady currents and dynamic turbulent winds are applied as environmental loads. As a result, the global motion and kinetic responses of the system are assessed in time domain. Kane’s dynamic theory is employed to formulate the global coupled dynamic equation of the whole system. The coupling terms are carefully considered to address the interactions among multiple turbines. This newly developed tool will be helpful in the future to evaluate the performance of MUFOWT under diverse environmental scenarios. In the present study, the aerodynamic interactions among multiple turbines including wake/array effect are not considered due to the complexity and uncertainty.


2021 ◽  
Author(s):  
Carlos Eduardo Silva de Souza ◽  
Nuno Fonseca ◽  
Petter Andreas Berthelsen ◽  
Maxime Thys

Abstract Design optimization of mooring systems is an important step towards the reduction of costs for the floating wind turbine (FWT) industry. Accurate prediction of slowly-varying horizontal motions is needed, but there are still questions regarding the most adequate models for low-frequency wave excitation, and damping, for typical FWT concepts. To fill this gap, it is fundamental to compare existing load models against model tests results. This paper describes a calibration procedure for a three-columns semi-submersible FWT, based on adjustment of a time-domain numerical model to experimental results in decay tests, and tests in waves. First, the numerical model and underlying assumptions are introduced. The model is then validated against experimental data, such that the adequate load models are chosen and adjusted. In this step, Newman’s approximation is adopted for the second-order wave loads, using wave drift coefficients obtained from the experiments. Calm-water viscous damping is represented as a linear and quadratic model, and adjusted based on decay tests. Additional damping from waves is then adjusted for each sea state, consisting of a combination of a wave drift damping component, and one component with viscous nature. Finally, a parameterization procedure is proposed for generalizing the results to sea states not considered in the tests.


Wind Energy ◽  
2018 ◽  
Vol 22 (3) ◽  
pp. 407-419 ◽  
Author(s):  
Jian Fan ◽  
Qian Li ◽  
Yanping Zhang

2011 ◽  
Vol 38 (3) ◽  
pp. 293-304 ◽  
Author(s):  
Elena Nuta ◽  
Constantin Christopoulos ◽  
Jeffrey A. Packer

The seismic response of tubular steel wind turbine towers is of significant concern as they are increasingly being installed in seismic areas and design codes do not clearly address this aspect of design. The seismic hazard is hence assessed for the Canadian seismic environment using implicit finite element analysis and incremental dynamic analysis of a 1.65 MW wind turbine tower. Its behaviour under seismic excitation is evaluated, damage states are defined, and a framework is developed for determining the probability of damage of the tower at varying seismic hazard levels. Results of the implementation of this framework in two Canadian locations are presented herein, where the risk was found to be low for the seismic hazard level prescribed for buildings. However, the design of wind turbine towers is subject to change, and the design spectrum is highly uncertain. Thus, a methodology is outlined to thoroughly investigate the probability of reaching predetermined damage states under any seismic loading conditions for future considerations.


Sign in / Sign up

Export Citation Format

Share Document