Dynamic performance investigation for large-scale wind turbine tower

Author(s):  
Fei Cha ◽  
Wang Nan ◽  
Zhou Bo ◽  
Chen Changzheng
2013 ◽  
Vol 446-447 ◽  
pp. 733-737
Author(s):  
Chi Chen ◽  
Hao Yuan Chen ◽  
Tian Lu

In this paper, a 1.5 MW wind turbine tower in Dali, Yunnan Province is used as the research object, using large-scale finite element software Ansys to carry on the dynamic analysis. These natural frequencies and natural vibration type of the first five of tower are obtained by modal analysis and are compared with natural frequency to determine whether the resonance occurs. Based on the modal analysis, the results of the transient dynamic analysis are obtained from the tower, which is loaded by the static wind load and fluctuating wind load in two different forms. By comparing the different results, it provides the basis for the dynamic design of wind turbine tower.


2012 ◽  
Vol 268-270 ◽  
pp. 1239-1243
Author(s):  
Kai Long ◽  
Ji Xiu Wu

In order to realize the buckling strength design for the opening door of the large-scale horizontal axis wind turbine tower, the method combined with the engineering method and the FEM was presented. The FE model of the door was established. The first-order buckling eigenvalues and buckling modes for three different structures were calculated and analyzed. Based on engineering method, the stress and buckling strength for the sections of tubular tower were obtained. Corrected by FEM results, the tower door with opening buckling strength were checked by engineering method. The results were compared with those by FEM. The safe design structure anti-buckling were presented. The method presented in this paper is feasible and effective for the opening door design in large-scale horizontal axis wind turbine tower.


2013 ◽  
Vol 694-697 ◽  
pp. 444-448
Author(s):  
Guo Yu Hu ◽  
Wen Lei Sun ◽  
Qing Yu

Based on UG and ADAMS software, the virtual prototype of a large wind turbine is established in this paper. Through the dynamic simulation of wind turbine tower, the time domain and frequency domain of vibration acceleration of X and Y direction on tower is obtained and compared to the actual measured data. The analysis results provide a theoretical basis for optimal structure design and further improvement of wind turbine.


2013 ◽  
Vol 446-447 ◽  
pp. 721-727
Author(s):  
Xi Song ◽  
Yin Guang Wu ◽  
Jie Yu Li ◽  
Rong Zhen Zhao

Based on a kind of 1.5MW large-scale horizontal axis wind turbine tower, the mechanical modeling of a wind turbine tower-foundation is established, the static and dynamic analysis of the model is carried out by ANSYS software. The top displacement of the system is calculated by the static analysis to meet the design requirements in engineering. In dynamic analysis, each pile foundation is equivalent to a group of springs for the simulation of horizontal and vertical rigidity of the pile. The influence of top mass and foundation elasticity on wind turbine tower modes is analyzed, and calculated the natural frequency of the tower within a certain scope of rigidity in different directions about the piles foundation. The results show that the natural frequency of the wind turbine tower is influenced significantly by the mass on the tower top and foundation rigidity. The study provides a theoretical basis for optimal design of the wind turbine.


2011 ◽  
Vol 383-390 ◽  
pp. 3479-3485
Author(s):  
Wei Li ◽  
Jian Xu

PID torque damper controller was designed and PID parameters were set with RBF neural network for the torque control of large-scale variable speed pitch regulated (VSPR) wind turbine. The system state equation can be extracted by the process of modal linearization using Bladed software, then PID controller was designed, parameters optimized and verification of design test with the control system of 3MW wind turbine was taken finally. The simulation result shows that the damper controller designed reduces driving chain vibration obviously, the adaptive ability and dynamic performance of system is improved with the use of RBF neural network which makes the system with good control quality.


2016 ◽  
Vol 23 (6) ◽  
pp. 559-575 ◽  
Author(s):  
Shitang Ke ◽  
Wei Yu ◽  
Tongguang Wang ◽  
Lin Zhao ◽  
Yaojun Ge

2015 ◽  
Vol 135 (3) ◽  
pp. 200-206 ◽  
Author(s):  
Yoki Ikeda ◽  
Naoto Nagaoka ◽  
Yoshihiro Baba

Author(s):  
Xu Pei-Zhen ◽  
Lu Yong-Geng ◽  
Cao Xi-Min

Background: Over the past few years, the subsynchronous oscillation (SSO) caused by the grid-connected wind farm had a bad influence on the stable operation of the system and has now become a bottleneck factor restricting the efficient utilization of wind power. How to mitigate and suppress the phenomenon of SSO of wind farms has become the focus of power system research. Methods: This paper first analyzes the SSO of different types of wind turbines, including squirrelcage induction generator based wind turbine (SCIG-WT), permanent magnet synchronous generator- based wind turbine (PMSG-WT), and doubly-fed induction generator based wind turbine (DFIG-WT). Then, the mechanisms of different types of SSO are proposed with the aim to better understand SSO in large-scale wind integrated power systems, and the main analytical methods suitable for studying the SSO of wind farms are summarized. Results: On the basis of results, using additional damping control suppression methods to solve SSO caused by the flexible power transmission devices and the wind turbine converter is recommended. Conclusion: The current development direction of the SSO of large-scale wind farm grid-connected systems is summarized and the current challenges and recommendations for future research and development are discussed.


Sign in / Sign up

Export Citation Format

Share Document