Complex field representation using digital micromirror device (DMD)

Author(s):  
Ahmed B. Ayoub ◽  
Demetri Psaltis
2018 ◽  
Vol 35 (5) ◽  
pp. 054203
Author(s):  
You-Quan Jia ◽  
Qi Feng ◽  
Bin Zhang ◽  
Wei Wang ◽  
Cheng-You Lin ◽  
...  

2017 ◽  
Vol 225 (3) ◽  
pp. 268-284 ◽  
Author(s):  
Andrew J. White ◽  
Dieter Kleinböhl ◽  
Thomas Lang ◽  
Alfons O. Hamm ◽  
Alexander L. Gerlach ◽  
...  

Abstract. Ambulatory assessment methods are well suited to examine how patients with panic disorder and agoraphobia (PD/A) undertake situational exposure. But under complex field conditions of a complex treatment protocol, the variability of data can be so high that conventional analytic approaches based on group averages inadequately describe individual variability. To understand how fear responses change throughout exposure, we aimed to demonstrate the incremental value of sorting HR responses (an index of fear) prior to applying averaging procedures. As part of their panic treatment, 85 patients with PD/A completed a total of 233 bus exposure exercises. Heart rate (HR), global positioning system (GPS) location, and self-report data were collected. Patients were randomized to one of two active treatment conditions (standard exposure or fear-augmented exposure) and completed multiple exposures in four consecutive exposure sessions. We used latent class cluster analysis (CA) to cluster heart rate (HR) responses collected at the start of bus exposure exercises (5 min long, centered on bus boarding). Intra-individual patterns of assignment across exposure repetitions were examined to explore the relative influence of individual and situational factors on HR responses. The association between response types and panic disorder symptoms was determined by examining how clusters were related to self-reported anxiety, concordance between HR and self-report measures, and bodily symptom tolerance. These analyses were contrasted with a conventional analysis based on averages across experimental conditions. HR responses were sorted according to form and level criteria and yielded nine clusters, seven of which were interpretable. Cluster assignment was not stable across sessions or treatment condition. Clusters characterized by a low absolute HR level that slowly decayed corresponded with low self-reported anxiety and greater self-rated tolerance of bodily symptoms. Inconsistent individual factors influenced HR responses less than situational factors. Applying clustering can help to extend the conventional analysis of highly variable data collected in the field. We discuss the merits of this approach and reasons for the non-stereotypical pattern of cluster assignment across exposures.


1993 ◽  
Vol 08 (23) ◽  
pp. 4031-4053
Author(s):  
HOVIK D. TOOMASSIAN

The structure of the free field representation and some four-point correlation functions of the SU(3) conformal field theory are considered.


2020 ◽  
Vol 134 ◽  
pp. 106122
Author(s):  
Jadze Princeton C. Narag ◽  
Niña Angelica F. Zambale ◽  
Nathaniel Hermosa

Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 149 ◽  
Author(s):  
Zifeng Lu ◽  
Jinghang Zhang ◽  
Hua Liu ◽  
Jialin Xu ◽  
Jinhuan Li

In the Hadamard transform (HT) near-infrared (NIR) spectrometer, there are defects that can create a nonuniform distribution of spectral energy, significantly influencing the absorbance of the whole spectrum, generating stray light, and making the signal-to-noise ratio (SNR) of the spectrum inconsistent. To address this issue and improve the performance of the digital micromirror device (DMD) Hadamard transform near-infrared spectrometer, a split waveband scan mode is proposed to mitigate the impact of the stray light, and a new Hadamard mask of variable-width stripes is put forward to improve the SNR of the spectrometer. The results of the simulations and experiments indicate that by the new scan mode and Hadamard mask, the influence of stray light is restrained and reduced. In addition, the SNR of the spectrometer also is increased.


2019 ◽  
Vol 125 (2) ◽  
Author(s):  
Jinliang Li ◽  
Xiao Chen ◽  
Min Lv ◽  
Yunshu Gao ◽  
Genxiang Chen

2014 ◽  
Vol 22 (15) ◽  
pp. 17999 ◽  
Author(s):  
Sebastianus A. Goorden ◽  
Jacopo Bertolotti ◽  
Allard P. Mosk

1993 ◽  
Vol 10 (1) ◽  
pp. 159-171 ◽  
Author(s):  
Robert Desimone ◽  
Jeffrey Moran ◽  
Stanley J. Schein ◽  
Mortimer Mishkin

AbstractThe classically defined receptive fields of V4 cells are confined almost entirely to the contralateral visual field. However, these receptive fields are often surrounded by large, silent suppressive regions, and stimulating the surrounds can cause a complete suppression of response to a simultaneously presented stimulus within the receptive field. We investigated whether the suppressive surrounds might extend across the midline into the ipsilateral visual field and, if so, whether the surrounds were dependent on the corpus callosum, which has a widespread distribution in V4. We found that the surrounds of more than half of the cells tested in the central visual field representation of V4 crossed into the ipsilateral visual field, with some extending up to at least 16 deg from the vertical meridian. Much of this suppression from the ipsilateral field was mediated by the corpus callosum, as section of the callosum dramatically reduced both the strength and extent of the surrounds. There remained, however, some residual suppression that was not further reduced by addition of an anterior commissure lesion. Because the residual ipsilateral suppression was similar in magnitude and extent to that found following section of the optic tract contralateral to the V4 recording, we concluded that it was retinal in origin. Using the same techniques employed in V4, we also mapped the ipsilateral extent of surrounds in the foveal representation of VI in an intact monkey. Results were very similar to those in V4 following commissural or contralateral tract sections. The findings suggest that V4 is a central site for long-range interactions both within and across the two visual hemifields. Taken with previous work, the results are consistent with the notion that the large suppressive surrounds of V4 neurons contribute to the neural mechanisms of color constancy and figure-ground separation.


Sign in / Sign up

Export Citation Format

Share Document