Dynamic materials inspired by cephalopods

Author(s):  
Alon Gorodetsky ◽  
Preeta Pratakshya
Keyword(s):  
2017 ◽  
Vol 898 ◽  
pp. 1134-1139
Author(s):  
Xue Fei Li ◽  
Ai Xue Sha ◽  
Xu Huang ◽  
Li Jun Huang

The hot deformation behavior of TC27 titanium alloy at the temperatures of 900-1150 °C and the strain rate of 0.01-10 s-1, the height reduction of 70%, was investigated in the isothermal compression test to identify the optimal extrusion parameters. The processing-map of TC27 titanium alloy was constructed based on dynamic materials model (DMM) and principle of Prasad*s instability. The conclusion shows that temperature and strain rate of deformation had a great influence on flow stress. At the beginning of deformation, the flow stress increased quickly with the augment of true strain and decreased slowly after flow stress reaching to the maximum value. Finally, flow stress tended to relatively stable condition. The flow stress decreased with the increase of temperature and increased with the increase of strain rate. The TC27 titanium alloy was sensitive to temperature and strain rate. Processing-map exhibited two peak efficiencies of power dissipation; one peak was 49% at 900°C/0.01 s-1, which dynamic recovery occured. The other peak was also 49% at 1050 °C /0.01s-1, which dynamic recrystallization occured in the domain. Besides, there were two instability areas in the processing-map which should be avoided during the extrusion. Therefore, in order to obtain the satisfactory properties, the parameters that 1050 °C and 0.01 s-1 were selected in the extrusion.


2018 ◽  
Vol 284 ◽  
pp. 37-42 ◽  
Author(s):  
R.R. Sattarov ◽  
T.A. Volkova ◽  
I.Z. Gubaydullin

Composites and dynamic materials that include conductive components are becoming a suitable choice in different applications. The eddy currents are generated when the conductive components are placed in alternating magnetic field. The eddy currents decrease the primary field and this effect has been well studied and it is used for electromagnetic shielding. Besides, the magnetic field increases in small space near edges of the conductive components. While this effect of magnetic field strengthening is known, it is rarely examined. We will introduce a simple model that can be appropriate for the conductive components in form of long thin sheets. We analytically analyze the model and obtain expressions that give upper bounds for increasing of the net magnetic field. The electromagnetic effect of strengthening should be taken into account when considering an application of the composites. The results are useful for electromagnetic compatibility analysis, non-destructive testing and monitoring of composite and dynamic materials with conductive components.


2020 ◽  
Vol 59 (29) ◽  
pp. 12139-12146 ◽  
Author(s):  
Zhaoming Zhang ◽  
Lin Cheng ◽  
Jun Zhao ◽  
Lei Wang ◽  
Kai Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document