Recent development of optical wavefront shaping towards robust and optimum optical focusing and stimulation at depths in biological tissue

2021 ◽  
Author(s):  
Qi Zhao ◽  
Puxiang Lai
2017 ◽  
Vol 111 (22) ◽  
pp. 221109 ◽  
Author(s):  
Ashton S. Hemphill ◽  
Yuecheng Shen ◽  
Yan Liu ◽  
Lihong V. Wang

2020 ◽  
Vol 10 (3) ◽  
pp. 875 ◽  
Author(s):  
Kai Zhang ◽  
Zhiyang Wang ◽  
Haihan Zhao ◽  
Chao Liu ◽  
Haoyun Zhang ◽  
...  

Due to the light scattering effect, it is difficult to directly achieve optical focusing and imaging in turbid media, such as milk and biological tissue. The turbidity suppression of a scattering medium and control of light through the scattering medium are important for imaging on biological tissue or biophotonics. Optical phase conjugation is a novel technology on turbidity suppression by directly creating phase conjugation light waves to form time-reversed light. In this work, we report a digital optical phase conjugation system based on off-axis holography. Compared with traditional digital optical phase conjugation methods, the off-axis holography acquires the conjugation phase using only one interference image, obviously saving photo acquisition time. Furthermore, we tested the optical phase conjugate reduction performance of this system and also achieved optical focusing through the diffuser. We also proved that the reversing of random scattering in turbid media is achievable by phase conjugation.


2012 ◽  
Vol 17 (3) ◽  
pp. 030506 ◽  
Author(s):  
Puxiang Lai ◽  
Xiao Xu ◽  
Honglin Liu ◽  
Lihong V. Wang

Science ◽  
2019 ◽  
Vol 363 (6426) ◽  
pp. 528-531 ◽  
Author(s):  
Donggyu Kim ◽  
Dirk R. Englund

Optical scattering is generally considered to be a nuisance of microscopy that limits imaging depth and spatial resolution. Wavefront shaping techniques enable optical imaging at unprecedented depth, but attaining superresolution within complex media remains a challenge. We used a quantum reference beacon (QRB), consisting of solid-state quantum emitters with spin-dependent fluorescence, to provide subwavelength guidestar feedback for wavefront shaping to achieve a superresolution optical focus. We implemented the QRB-guided imaging with nitrogen-vacancy centers in diamond nanocrystals, which enable optical focusing with a subdiffraction resolution below 186 nanometers (less than half the wavelength). QRB-assisted wavefront-shaping should find use in a range of applications, including deep-tissue quantum enhanced sensing and individual optical excitation of magnetically coupled spin ensembles for applications in quantum information processing.


2015 ◽  
Vol 9 (2) ◽  
pp. 126-132 ◽  
Author(s):  
Puxiang Lai ◽  
Lidai Wang ◽  
Jian Wei Tay ◽  
Lihong V. Wang

2019 ◽  
Vol 12 (04) ◽  
pp. 1930007 ◽  
Author(s):  
Meiyun Xia ◽  
Deyu Li ◽  
Ling Wang ◽  
Daifa Wang

While propagating inside the strongly scattering biological tissue, photons lose their incident directions beyond one transport mean free path (TMFP, [Formula: see text]1 millimeter (mm)), which makes it challenging to achieve optical focusing or clear imaging deep inside tissue. By manipulating many degrees of the incident optical wavefront, the latest optical wavefront engineering (WFE) technology compensates the wavefront distortions caused by the scattering media and thus is toward breaking this physical limit, bringing bright perspective to many applications deep inside tissue, e.g., high resolution functional/molecular imaging, optical excitation (optogenetics) and optical tweezers. However, inside the dynamic turbid media such as the biological tissue, the wavefront distortion is a fast and continuously changing process whose decorrelation rate is on timescales from milliseconds (ms) to microseconds ([Formula: see text]s), or even faster. This requires that the WFE technology should be capable of beating this rapid process. In this review, we discuss the major challenges faced by the WFE technology due to the fast decorrelation of dynamic turbid media such as living tissue when achieving light focusing/imaging and summarize the research progress achieved to date to overcome these challenges.


2015 ◽  
Vol 08 (02) ◽  
pp. 1550007 ◽  
Author(s):  
Qiang Yang ◽  
Xinzhu Sang ◽  
Daxiong Xu

Focusing light though scattering media beyond the ballistic regime is a challenging task in biomedical optical imaging. This challenge can be overcome by wavefront shaping technique, in which a time-reversed (TR) wavefront of scattered light is generated to suppress the scattering. In previous TR optical focusing experiments, a phase-only spatial light modulator (SLM) has been typically used to control the wavefront of incident light. Unfortunately, although the phase information is reconstructed by the phase-only SLM, the amplitude information is lost, resulting in decreased peak-to-background ratio (PBR) of optical focusing in the TR wavefront reconstruction. A new method of TR optical focusing through scattering media is proposed here, which numerically reconstructs the full phase and amplitude of a simulated scattered light field by using a single phase-only SLM. Simulation results and the proposed optical setup show that the time-reversal of a fully developed speckle field can be digitally implemented with both phase and amplitude recovery, affording a way to improve the performance of light focusing through scattering media.


Sign in / Sign up

Export Citation Format

Share Document