Seasonal variability of the correlations between the mass concentrations of submicron aerosol and black carbon at the Aerosol Station (Tomsk) and in the Fonovaya Observatory in 2014-2020

2021 ◽  
Author(s):  
Elena P. Yausheva ◽  
Mikhail V. Panchenko ◽  
Valerii S. Kozlov ◽  
Vladimir P. Shmargunov
Author(s):  
James Brooks ◽  
James D. Allan ◽  
Paul I. Williams ◽  
Dantong Liu ◽  
Cathryn Fox ◽  
...  

<p><strong>Abstract.</strong> The vertical distribution in the physical and chemical properties of submicron aerosol has been characterised across northern India for the first time using airborne in-situ measurements. This study focusses primarily on the Indo-Gangetic Plain, a low-lying area in the north of India which commonly experiences high aerosol mass concentrations prior to the monsoon season. Data presented are from the UK Facility for Airborne Atmospheric Measurements BAe-146 research aircraft that performed flights in the region during the 2016 pre-monsoon (11<sup>th</sup> and 12<sup>th</sup> June) and monsoon (30<sup>th</sup> June to 11<sup>th</sup> July) seasons.</p> <p> Inside the Indo-Gangetic Plain boundary layer, organic matter dominated the submicron aerosol mass (43&amp;thinsp;%) followed by sulphate (29&amp;thinsp;%), ammonium (14&amp;thinsp;%), nitrate (7&amp;thinsp;%) and black carbon (7&amp;thinsp;%). However, outside the Indo-Gangetic Plain, sulphate was the dominant species contributing 44&amp;thinsp;% to the total submicron aerosol mass in the boundary layer, followed by organic matter (30&amp;thinsp;%), ammonium (14&amp;thinsp;%), nitrate (6&amp;thinsp;%) and black carbon (6&amp;thinsp;%). Chlorine mass concentrations were negligible throughout the campaign. Black carbon mass concentrations were higher inside the Indo-Gangetic Plain (2&amp;thinsp;µg/m<sup>3</sup> std) compared to outside (1&amp;thinsp;µg/m<sup>3</sup> std). Nitrate appeared to be controlled by thermodynamic processes, with increased mass concentration in conditions of lower temperature and higher relative humidity. Increased mass and number concentrations were observed inside the Indo-Gangetic Plain and the aerosol was more absorbing in this region, whereas outside the Indo-Gangetic Plain the aerosol was larger in size and more scattering in nature, suggesting greater dust presence especially in northwest India. The aerosol composition remained largely similar as the monsoon season progressed, but the total aerosol mass concentrations decreased by ~&amp;thinsp;50&amp;thinsp;% as the rainfall arrived; the pre-monsoon average total mass concentration was 30&amp;thinsp;µg/m<sup>3</sup> std compared to a monsoon average total mass concentration of 10&amp;ndash;20&amp;thinsp;µg/m<sup>3</sup> std. However, this mass concentration decrease was less noteworthy (~&amp;thinsp;20&amp;ndash;30&amp;thinsp;%) over the Indo-Gangetic Plain, likely due to the strength of emission sources in this region. Decreases occurred in coarse mode aerosol, with the fine mode fraction increasing with monsoon arrival. In the aerosol vertical profile, inside the Indo-Gangetic Plain during the pre-monsoon, organic aerosol and absorbing aerosol species dominated in the lower atmosphere (<&amp;thinsp;1.5&amp;thinsp;km) with sulphate, dust and other scattering aerosol species enhanced in an elevated aerosol layer above 1.5&amp;thinsp;km with maximum aerosol height ~&amp;thinsp;6&amp;thinsp;km. As the monsoon progressed into this region, the elevated aerosol layer diminished, the aerosol maximum height reduced to ~&amp;thinsp;2&amp;thinsp;km and the total mass concentrations decreased by ~&amp;thinsp;50&amp;thinsp;%. The dust and sulphate-dominated aerosol layer aloft was removed upon monsoon arrival, highlighted by an increase in fine mode fraction throughout the profile.</p>


2019 ◽  
Vol 19 (8) ◽  
pp. 5615-5634 ◽  
Author(s):  
James Brooks ◽  
James D. Allan ◽  
Paul I. Williams ◽  
Dantong Liu ◽  
Cathryn Fox ◽  
...  

<p><strong>Abstract.</strong> The vertical distribution in the physical and chemical properties of submicron aerosol has been characterised across northern India for the first time using airborne in situ measurements. This study focusses primarily on the Indo-Gangetic Plain, a low-lying area in the north of India which commonly experiences high aerosol mass concentrations prior to the monsoon season. Data presented are from the UK Facility for Airborne Atmospheric Measurements BAe-146 research aircraft that performed flights in the region during the 2016 pre-monsoon (11 and 12 June) and monsoon (30 June to 11 July) seasons.</p> <p>Inside the Indo-Gangetic Plain boundary layer, organic matter dominated the submicron aerosol mass (43&amp;thinsp;%) followed by sulfate (29&amp;thinsp;%), ammonium (14&amp;thinsp;%), nitrate (7&amp;thinsp;%) and black carbon (7&amp;thinsp;%). However, outside the Indo-Gangetic Plain, sulfate was the dominant species, contributing 44&amp;thinsp;% to the total submicron aerosol mass in the boundary layer, followed by organic matter (30&amp;thinsp;%), ammonium (14&amp;thinsp;%), nitrate (6&amp;thinsp;%) and black carbon (6&amp;thinsp;%). Chlorine mass concentrations were negligible throughout the campaign. Black carbon mass concentrations were higher inside the Indo-Gangetic Plain (2&amp;thinsp;<span class="inline-formula">µ</span>g&amp;thinsp;m<span class="inline-formula"><sup>−3</sup></span>) compared to outside (1&amp;thinsp;<span class="inline-formula">µ</span>g&amp;thinsp;m<span class="inline-formula"><sup>−3</sup></span>). Nitrate appeared to be controlled by thermodynamic processes, with increased mass concentration in conditions of lower temperature and higher relative humidity. Increased mass and number concentrations were observed inside the Indo-Gangetic Plain and the aerosol was more absorbing in this region, whereas outside the Indo-Gangetic Plain the aerosol was larger in size and more scattered in nature, suggesting greater dust presence, especially in north-western India. The aerosol composition remained largely similar as the monsoon season progressed, but the total aerosol mass concentrations decreased by <span class="inline-formula">∼50</span>&amp;thinsp;% as the rainfall arrived; the pre-monsoon average total mass concentration was 30&amp;thinsp;<span class="inline-formula">µ</span>g&amp;thinsp;m<span class="inline-formula"><sup>−3</sup></span> compared to a monsoon average total mass concentration of 10–20&amp;thinsp;<span class="inline-formula">µ</span>g&amp;thinsp;m<span class="inline-formula"><sup>−3</sup></span>. However, this mass concentration decrease was less noteworthy (<span class="inline-formula">∼20</span>&amp;thinsp;%–30&amp;thinsp;%) over the Indo-Gangetic Plain, likely due to the strength of emission sources in this region. Decreases occurred in coarse mode aerosol, with the fine mode fraction increasing with monsoon arrival. In the aerosol vertical profile, inside the Indo-Gangetic Plain during the pre-monsoon, organic aerosol and absorbing aerosol species dominated in the lower atmosphere (<span class="inline-formula">&amp;lt;1.5</span>&amp;thinsp;km), with sulfate, dust and other scattering aerosol species enhanced in an elevated aerosol layer above 1.5&amp;thinsp;km with maximum aerosol height <span class="inline-formula">∼6</span>&amp;thinsp;km. The elevated concentration of dust at altitudes <span class="inline-formula">&amp;gt;1.5</span>&amp;thinsp;km is<span id="page5616"/> a clear indication of dust transport from the Great Indian Desert, also called the Thar Desert, in north-western India. As the monsoon progressed into this region, the elevated aerosol layer diminished, the aerosol maximum height reduced to <span class="inline-formula">∼2</span>&amp;thinsp;km. The dust and sulfate-dominated aerosol layer aloft was removed upon monsoon arrival, highlighted by an increase in fine mode fraction throughout the profile.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 351
Author(s):  
Mikhail Panchenko ◽  
Elena Yausheva ◽  
Dmitry Chernov ◽  
Valerii Kozlov ◽  
Valery Makarov ◽  
...  

Based on the multiyear measurements in the surface atmospheric layer (from five stations) and regular flights of aircraft laboratory over the background region of Southwestern Siberia, the compositions of mass concentrations of submicron aerosol and absorbing substances (soot and black carbon) are analyzed. The annual average concentrations of submicron aerosol and black carbon were found to be maximal in 1997, 2012, and 2016, when the largest numbers of wildfires occurred across the entire territory of Siberia. No significant, unidirectional trend of interannual variations in the concentration of submicron particles was observed, while the concentration of absorbing substance reliably decreased by 1.5% each year. To estimate the effect of urban pollutants, mass concentrations of aerosol and absorbing substance in the surface layer at the Aerosol Station (in the suburban region of Tomsk) were compared to those at the Fonovaya Observatory (in the background region). It was shown that the largest contribution of anthropogenic sources in the suburban region was observed in the winter season, while minimal difference was observed in the warm period of the year. The seasonal behavior of the concentrations of elemental carbon at three stations in Novosibirsk Oblast almost completely matched the dynamics of the variations in the black carbon concentration in the atmosphere of Tomsk Oblast. Data of aircraft sensing in the troposphere of the background region of Southwestern Siberia (2000–2018) were used to determine the average values of the vertical distribution of the submicron aerosol and black carbon concentrations in the altitude range of 0.5–7 km for each season. It was found that at altitudes of 0.5–7 km, there were no unidirectional trends in submicron aerosol; however, there was an increase of black carbon concentration at all altitudes with a positive trend of 5.3 ± 2.2% per year at an altitude of 1.5 km, significant at a p-value = 0.05.


2015 ◽  
Vol 15 (10) ◽  
pp. 5415-5428 ◽  
Author(s):  
R. Kumar ◽  
M. C. Barth ◽  
V. S. Nair ◽  
G. G. Pfister ◽  
S. Suresh Babu ◽  
...  

Abstract. This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March–May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inland sites. In general, the model underestimates the observed BC mass concentrations. However, the model–observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average ± standard deviation (representing spatial and temporal variability) BC mass concentration (1341 ± 2353 ng m−3) in South Asia. BC emissions from residential (61%) and industrial (23%) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.


2006 ◽  
Author(s):  
Svetlana A. Terpugova ◽  
Mikhail V. Panchenko ◽  
Valerii S. Kozlov

2020 ◽  
Author(s):  
Sobhan Kumar Kompalli ◽  
Surendran Nair Suresh Babu ◽  
Krishnaswamy Krishnamoorthy ◽  
Sreedharan Krishnakumari Satheesh ◽  
Mukunda M. Gogoi ◽  
...  

Abstract. Regional climatic implications of aerosol black carbon (BC) are well recognized over South Asia, which has a wide variety of anthropogenic sources in a large abundance. Significant uncertainties remain in its quantification due to lack of sufficient information on the microphysical properties (its concentration, size, and mixing state with other aerosol components), which determine the absorption potential of BC. Especially the information on mixing state of BC is extremely sparse over this region. In this study, first-ever observations of the size distribution and mixing state of individual refractory black carbon (rBC) particles in the south Asian outflow to Southeastern Arabian Sea, northern and equatorial Indian Ocean regions are presented based on measurements using a single particle soot photometer (SP2) aboard the ship cruise of the Integrated Campaign for Aerosols, gases, and Radiation Budget (ICARB-2018) during winter-2018 (16 January to 13 February). The results revealed significant spatial heterogeneity of BC characteristics. Highest rBC mass concentrations (~ 938 ± 293 ng m−3) with the highest relative coating thickness (RCT; the ratio of BC core to its coating diameters) of ~ 2.16 ± 0.19 are found over the Southeast Arabian Sea (SEAS) region, which is in the proximity of the continental outflow. As we move to farther oceanic regions, though the mass concentrations decreased by nearly half (~ 546 ± 80 ng m−3), BC still remained thickly coated (RCT ~ 2.05 ± 0.07). The air over the remote equatorial Indian Ocean, which received considerable marine air masses compared to the other regions, showed the lowest rBC mass concentrations (~ 206 ± 114 ng m−3), with a moderately thick coating (RCT ~ 1.73 ± 0.16). Even over oceanic regions far from the landmass, regions which received the outflow from more industrialized east coast/the Bay of Bengal had thicker coating (~ 104 nm) compared to regions that received outflow from the west coast/peninsular India (~ 86 nm). Although different regions of the ocean depicted contrasting concentrations and mixing state parameters due to varying extent and nature of the continental outflow as well as the atmospheric lifetime of air masses, the modal parameters of rBC mass-size distributions were similar over all the regions. The observed mono-modal distribution with mean mass median diameters (MMD) in the range of 0.19–0.20 μm suggested mixed sources of BC. The mean fraction of BC containing particles (FBC) varied in the range 0.20–0.28 (suggesting significant amounts of non-BC particles), whereas the bulk mixing ratio of coating mass to rBC mass was highest (8.77 ± 2.77) over the outflow regions compared to the remote ocean (4.29 ± 1.54) highlighting the role of outflow in providing condensable material for coating on rBC. These parameters, along with the information on size-resolved mixing state of BC cores, throw light on the role of sources and secondary processing of their complex mixtures for coating on BC under highly polluted conditions. Examination of the non-refractory sub-micrometre aerosol chemical composition obtained using the aerosol chemical speciation monitor (ACSM) suggested that the overall aerosol system was sulfate dominated over the far-oceanic regions. In contrast, organics were equally prominent adjacent to the coastal landmass. Association between the BC mixing state and aerosol chemical composition suggested that sulfate was the probable dominant coating material on rBC cores.


2016 ◽  
Vol 8 (2) ◽  
pp. 355-382 ◽  
Author(s):  
Wolfram Birmili ◽  
Kay Weinhold ◽  
Fabian Rasch ◽  
André Sonntag ◽  
Jia Sun ◽  
...  

Abstract. The German Ultrafine Aerosol Network (GUAN) is a cooperative atmospheric observation network, which aims at improving the scientific understanding of aerosol-related effects in the troposphere. The network addresses research questions dedicated to both climate- and health-related effects. GUAN's core activity has been the continuous collection of tropospheric particle number size distributions and black carbon mass concentrations at 17 observation sites in Germany. These sites cover various environmental settings including urban traffic, urban background, rural background, and Alpine mountains. In association with partner projects, GUAN has implemented a high degree of harmonisation of instrumentation, operating procedures, and data evaluation procedures. The quality of the measurement data is assured by laboratory intercomparisons as well as on-site comparisons with reference instruments. This paper describes the measurement sites, instrumentation, quality assurance, and data evaluation procedures in the network as well as the EBAS repository, where the data sets can be obtained (doi:10.5072/guan).


2016 ◽  
Author(s):  
Saehee Lim ◽  
Xavier Faïn ◽  
Patrick Ginot ◽  
Vladimir Mikhalenko ◽  
Stanislav Kutuzov ◽  
...  

Abstract. Black carbon (BC), emitted by fossil fuel combustion and biomass burning, is the second largest man-made contributor to global warming after carbon dioxide (Bond et al., 2013). However, limited information exists on its past emissions and atmospheric variability. In this study, we present the first high-resolution record of refractory BC (rBC, including mass concentration and size) reconstructed from ice cores drilled at a high-altitude Eastern European site in Mt. Elbrus (ELB), Caucasus (5115 m a.s.l.). The ELB ice core record, covering the period 1825–2013, reflects the atmospheric load of rBC particles at the ELB site transported from the European continent with a larger rBC input from sources located in the Eastern part of Europe. In the first half of the 20th century, European anthropogenic emissions resulted in a 1.5-fold increase in the ice core rBC mass concentrations as respect to its level in the preindustrial era (before 1850). The rBC mass concentrations increased by a 5-fold in 1960–1980, followed by a decrease until ~ 2000. Over the last decade, the rBC signal for summer time slightly increased. We have compared the signal with the atmospheric BC load simulated using past BC emissions (ACCMIP and MACCity inventories) and taken into account the contribution of different geographical region to rBC distribution and deposition at the ELB site. Interestingly, the observed rBC variability in the ELB ice core record since the 1960s is not in perfect agreement with the simulated atmospheric BC load. Similar features between the ice core rBC record and the best scenarios for the atmospheric BC load support that anthropogenic BC increase in the 20th century is reflected in the ELB ice core record. However, the peak in BC mass concentration observed in ~ 1970 in the ice core is estimated to occur a decade later from past inventories. BC emission inventories for the period 1960s–1970s may be underestimating European anthropogenic emissions. Furthermore, for summer time snow layers of the last 2000s, the slightly increasing trend of rBC deposition likely reflects recent changes in anthropogenic and biomass burning BC emissions in the Eastern part of Europe. Our study highlights that the past changes in BC emissions of Eastern Europe need to be considered in assessing on-going air quality regulation.


Author(s):  
Honey Dawn Alas ◽  
Almond Stöcker ◽  
Nikolaus Umlauf ◽  
Oshada Senaweera ◽  
Sascha Pfeifer ◽  
...  

Abstract Background Data from extensive mobile measurements (MM) of air pollutants provide spatially resolved information on pedestrians’ exposure to particulate matter (black carbon (BC) and PM2.5 mass concentrations). Objective We present a distributional regression model in a Bayesian framework that estimates the effects of spatiotemporal factors on the pollutant concentrations influencing pedestrian exposure. Methods We modeled the mean and variance of the pollutant concentrations obtained from MM in two cities and extended commonly used lognormal models with a lognormal-normal convolution (logNNC) extension for BC to account for instrument measurement error. Results The logNNC extension significantly improved the BC model. From these model results, we found local sources and, hence, local mitigation efforts to improve air quality, have more impact on the ambient levels of BC mass concentrations than on the regulated PM2.5. Significance Firstly, this model (logNNC in bamlss package available in R) could be used for the statistical analysis of MM data from various study areas and pollutants with the potential for predicting pollutant concentrations in urban areas. Secondly, with respect to pedestrian exposure, it is crucial for BC mass concentration to be monitored and regulated in areas dominated by traffic-related air pollution.


Author(s):  
Guman Singh Meena ◽  
Subrata Mukherjee ◽  
Pallavi Buchunde ◽  
Pramod D. Safai ◽  
Vyoma Singla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document