Novel pressure sensors based on polymer film with surface microstructures

2021 ◽  
Author(s):  
Man Zhang ◽  
Cheng Shan ◽  
Liangping Xia ◽  
Suihu Dang ◽  
Mengting Zeng ◽  
...  
2005 ◽  
Vol 870 ◽  
Author(s):  
Arous Arshak ◽  
Khalil Arshak ◽  
Deirdre Morris ◽  
Olga Korostynska ◽  
Essa Jafer

AbstractIn this work, a PVDF thick film paste was deposited onto interdigitated electrodes to form a capacitor. Two different substrates, alumina and Melinex® were used. Capacitors, fabricated on alumina substrates were tested as strain gauges, and showed a high sensitivity with low hysteresis. Capacitors on Melinex® substrates were tested as pressure sensors by adhering them to planar and cylindrical surfaces and subjecting them to pressures up to 300 kPa. Their sensitivity and hysteresis during cycling were examined and compared. It was found that sensors on cylindrical surfaces showed a higher sensitivity, however the hysteresis was also increased. It is thought that this is due to instabilities in the polymer film, accentuated by stretching of the substrate.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ningning Bai ◽  
Liu Wang ◽  
Qi Wang ◽  
Jue Deng ◽  
Yan Wang ◽  
...  

AbstractSensitivity is a crucial parameter for flexible pressure sensors and electronic skins. While introducing microstructures (e.g., micro-pyramids) can effectively improve the sensitivity, it in turn leads to a limited pressure-response range due to the poor structural compressibility. Here, we report a strategy of engineering intrafillable microstructures that can significantly boost the sensitivity while simultaneously broadening the pressure responding range. Such intrafillable microstructures feature undercuts and grooves that accommodate deformed surface microstructures, effectively enhancing the structural compressibility and the pressure-response range. The intrafillable iontronic sensor exhibits an unprecedentedly high sensitivity (Smin > 220 kPa−1) over a broad pressure regime (0.08 Pa-360 kPa), and an ultrahigh pressure resolution (18 Pa or 0.0056%) over the full pressure range, together with remarkable mechanical stability. The intrafillable structure is a general design expected to be applied to other types of sensors to achieve a broader pressure-response range and a higher sensitivity.


2020 ◽  
Vol 35 (23-24) ◽  
pp. 3210-3221
Author(s):  
Kai Huang ◽  
Qi Cheng ◽  
Honglei Zhang ◽  
Ligang Lin ◽  
Qiying Wang

Abstract


2003 ◽  
Vol 778 ◽  
Author(s):  
Rajdip Bandyopadhyaya ◽  
Weizhi Rong ◽  
Yong J. Suh ◽  
Sheldon K. Friedlander

AbstractCarbon black in the form of nanoparticle chains is used as a reinforcing filler in elastomers. However, the dynamics of the filler particles under tension and their role in the improvement of the mechanical properties of rubber are not well understood. We have studied experimentally the dynamics of isolated nanoparticle chain aggregates (NCAs) of carbon made by laser ablation, and also that of carbon black embedded in a polymer film. In situ studies of stretching and contraction of such chains in the transmission electron microscope (TEM) were conducted under different maximum values of strain. Stretching causes initially folded NCA to reorganize into a straight, taut configuration. Further stretching leads to either plastic deformation and breakage (at 37.4% strain) or to a partial elastic behavior of the chain at small strains (e.g. 2.3% strain). For all cases the chains were very flexible under tension. Similar reorientation and stretching was observed for carbon black chains embedded in a polymer film. Such flexible and elastic nature of NCAs point towards a possible mechanism of reinforcement of rubber by carbon black fillers.


Author(s):  
M.P. Danilaev ◽  
◽  
E.A. Bogoslov ◽  
Yu.E. Polsky ◽  
I.V. Yanilkin ◽  
...  

Author(s):  
M. S. ASSAD ◽  
◽  
O. G. PENYAZKOV ◽  
I. I. CHERNUHO ◽  
K. ALHUSSAN ◽  
...  

This work is devoted to the study of the dynamics of combustion wave propagation in oxygen-enriched mixtures of n-heptane with air and jet fuel "Jet A-1" in a small-size pulsed detonation combustor (PDC) with a diameter of 20 mm and a length less than 1 m. Experiments are carried out after the PDC reaches a stationary thermal regime when changing the equivalence ratio (ϕ = 0.73-1.89) and the oxygen-to-air ratio ([O2/air] = 0.15-0.60). The velocity of the combustion wave is determined by measuring the propagation time of the flame front between adjacent pressure sensors that form measurement segements along the PDC.


Sign in / Sign up

Export Citation Format

Share Document