Cross-scale fabrication of diffraction grating based on self-rebound properties of flexible substrate

2021 ◽  
Author(s):  
Yaowen Ban ◽  
Biao Lei ◽  
Guoyong Ye ◽  
Guobo Zhao ◽  
Zhenghui Zhang ◽  
...  
2017 ◽  
Vol 27 (2) ◽  
pp. 025017 ◽  
Author(s):  
F Hamouda ◽  
A Aassime ◽  
H Bertin ◽  
P Gogol ◽  
B Bartenlian ◽  
...  

Author(s):  
Godfrey C. Hoskins ◽  
V. Williams ◽  
V. Allison

The method demonstrated is an adaptation of a proven procedure for accurately determining the magnification of light photomicrographs. Because of the stability of modern electrical lenses, the method is shown to be directly applicable for providing precise reproducibility of magnification in various models of electron microscopes.A readily recognizable area of a carbon replica of a crossed-line diffraction grating is used as a standard. The same area of the standard was photographed in Phillips EM 200, Hitachi HU-11B2, and RCA EMU 3F electron microscopes at taps representative of the range of magnification of each. Negatives from one microscope were selected as guides and printed at convenient magnifications; then negatives from each of the other microscopes were projected to register with these prints. By deferring measurement to the print rather than comparing negatives, correspondence of magnification of the specimen in the three microscopes could be brought to within 2%.


2014 ◽  
Vol E97.C (10) ◽  
pp. 1036-1040 ◽  
Author(s):  
Junichi NAKAYAMA ◽  
Yasuhiko TAMURA

2008 ◽  
Vol 67 (7) ◽  
pp. 597-607
Author(s):  
M. Yu. Demchenko ◽  
V. S. Myroshnychenko ◽  
Yu. V. Svishchev ◽  
Ye. B. Senkevich

PIERS Online ◽  
2010 ◽  
Vol 6 (2) ◽  
pp. 105-108 ◽  
Author(s):  
Haipeng Lu ◽  
Jing Yang ◽  
Longjiang Deng

Author(s):  
Byoung-Joon Kim ◽  
Hae-A-Seul Shin ◽  
In-Suk Choi ◽  
Young-Chang Joo

Abstract The electrical resistance Cu film on flexible substrate was investigated in cyclic bending deformation. The electrical resistance of 1 µm thick Cu film on flexible substrate increased up to 120 % after 500,000 cycles in 1.1 % tensile bending strain. Crack and extrusion were observed due to the fatigue damage of metal film. Low bending strain did not cause any damage on metal film but higher bending strain resulted in severe electrical and mechanical damage. Thinner film showed higher fatigue resistance because of the better mechanical property of thin film. Cu film with NiCr under-layer showed poorer fatigue resistance in tensile bending mode. Ni capping layer did not improve the fatigue resistance of Cu film, but Al capping layer suppressed crack formation and lowered electrical resistance change. The NiCr under layer, Ni capping layer, and Al capping layer effect on electrical resistance change of Cu film was compared with Cu only sample.


2017 ◽  
Vol 9 (5) ◽  
pp. 05035-1-05035-6 ◽  
Author(s):  
G. I. Kopach ◽  
◽  
R. P. Mygushchenko ◽  
G. S. Khrypunov ◽  
A. I. Dobrozhan ◽  
...  

2020 ◽  
Vol 315 ◽  
pp. 112341
Author(s):  
Zhaojun Liu ◽  
Bian Tian ◽  
Xu Fan ◽  
Jiangjiang Liu ◽  
Zhongkai Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document