A forest fire warning model: using time decay model to calculate comprehensive precipitation index

2021 ◽  
Author(s):  
Jiajun Chen ◽  
Xiaoqing Wang ◽  
Haifeng Huang
Author(s):  
K. van Thienen-Visser ◽  
J. P. Pruiksma ◽  
J. N. Breunese

Abstract. The Groningen gas field in the Netherlands is Europe's largest gas field. It has been produced since 1963 and production is expected to continue until 2080. The pressure decline in the field causes compaction in the reservoir which is observed as subsidence at the surface. Measured subsidence is characterized by a delay at the start of production. As linear compaction models cannot explain this behavior, alternative compaction models (e.g. Rate Type Compaction Model and Time Decay model) have been investigated that may explain the measured subsidence. Although the compaction models considered in this study give a good match to this delay, their forecasts are significantly different. Future measurements of subsidence in this area will indicate which type of compaction model is preferred. This will lead to better forecasts of subsidence in future. The pattern of over- and underestimation of the subsidence is similar for the compaction models investigated and tested. The pattern can be explained by differences in modeled porosity and aquifer activity illustrating the improvement of subsurface knowledge on the reservoir using subsidence measurements.


Author(s):  
Graham Cormode ◽  
Vladislav Shkapenyuk ◽  
Divesh Srivastava ◽  
Bojian Xu

2020 ◽  
pp. 57-65
Author(s):  
Eusébio Conceiçã ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Jorge Raposo ◽  
Domingos Xavier Viegas ◽  
...  

This paper refers to a numerical study of the hypo-thermal behaviour of a pine tree in a forest fire environment. The pine tree thermal response numerical model is based on energy balance integral equations for the tree elements and mass balance integral equation for the water in the tree. The simulation performed considers the heat conduction through the tree elements, heat exchanges by convection between the external tree surfaces and the environment, heat exchanges by radiation between the flame and the external tree surfaces and water heat loss by evaporation from the tree to the environment. The virtual three-dimensional tree model has a height of 7.5 m and is constituted by 8863 cylindrical elements representative of its trunks, branches and leaves. The fire front has 10 m long and a 2 m high. The study was conducted taking into account that the pine tree is located 5, 10 or 15 m from the fire front. For these three analyzed distances, the numerical results obtained regarding to the distribution of the view factors, mean radiant temperature and surface temperatures of the pine tree are presented. As main conclusion, it can be stated that the values of the view factor, MRT and surface temperatures of the pine tree decrease with increasing distance from the pine tree in front of fire.


Author(s):  
S. D. AMBROSE ◽  
P. SCHLESINGER ◽  
T. A. STONE
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document