Pulse-width modulation, smooth-pursuit eye movements, and moving-object perception

Author(s):  
Julie Mapes Lindholm ◽  
Angelique A. Scharine
2007 ◽  
Vol 97 (2) ◽  
pp. 1353-1367 ◽  
Author(s):  
Miriam Spering ◽  
Karl R. Gegenfurtner

Segregating a moving object from its visual context is particularly relevant for the control of smooth-pursuit eye movements. We examined the interaction between a moving object and a stationary or moving visual context to determine the role of the context motion signal in driving pursuit. Eye movements were recorded from human observers to a medium-contrast Gaussian dot that moved horizontally at constant velocity. A peripheral context consisted of two vertically oriented sinusoidal gratings, one above and one below the stimulus trajectory, that were either stationary or drifted into the same or opposite direction as that of the target at different velocities. We found that a stationary context impaired pursuit acceleration and velocity and prolonged pursuit latency. A drifting context enhanced pursuit performance, irrespective of its motion direction. This effect was modulated by context contrast and orientation. When a context was briefly perturbed to move faster or slower eye velocity changed accordingly, but only when the context was drifting along with the target. Perturbing a context into the direction orthogonal to target motion evoked a deviation of the eye opposite to the perturbation direction. We therefore provide evidence for the use of absolute and relative motion cues, or motion assimilation and motion contrast, for the control of smooth-pursuit eye movements.


Author(s):  
Agnes Wong

Smooth pursuit consists of conjugate eye movements that allow both eyes to smoothly track a slowly moving object so that its image is kept on the foveae. For example, smooth pursuit eye movements are used when you track a child on a swing. Only animals with foveae make smooth pursuit eye movements. Rabbits, for instance, do not have foveae, and their eyes cannot track a small moving target. However, if a rabbit is placed inside a rotating drum painted on the inside with stripes so that the rabbit sees the entire visual field rotating en bloc, it will track the stripes optokinetically. Humans have both smooth pursuit and optokinetic eye movements, but pursuit predominates. When you track a small, moving object against a detailed stationary background, such as a bird flying against a background of leaves, the optokinetic system will try to hold your gaze on the stationary background, but it is overridden by pursuit. Pursuit works well at speeds up to about 70°/sec, but top athletes may generate pursuit as fast as 130°/sec. Pursuit responds slowly to unexpected changes—it takes about 100 msec to track a target that starts to move suddenly, and this is why we need the faster acting vestibulo-ocular reflex (VOR) to stabilize our eyes when our heads move. However, pursuit can detect patterns of motion and respond to predictable target motion in much less than 100 msec. Pursuit cannot be generated voluntarily without a suitable target. If you try to pursue an imaginary target moving across your visual field, you will make a series of saccades instead of pursuit. However, the target that evokes pursuit does not have to be visual; it may be auditory (e.g., a moving, beeping pager), proprioceptive (e.g., tracking your outstretched finger in the dark), tactile (e.g., an ant crawling on your arm in the dark), or cognitive (e.g., tracking a stroboscopic motion in which a series of light flashes in sequence, even though no actual motion occurs.


2011 ◽  
Vol 70 ◽  
pp. 352-352 ◽  
Author(s):  
K Strand Brodd ◽  
K Rosander ◽  
H Grönqvist ◽  
G Holmström ◽  
B Strömberg ◽  
...  

1983 ◽  
Vol 79 (2-3) ◽  
pp. 190-192 ◽  
Author(s):  
G. Tedeschi ◽  
P. R. M. Bittencourt ◽  
A. T. Smith ◽  
A. Richens

1975 ◽  
Vol 44 (2) ◽  
pp. 111-115 ◽  
Author(s):  
Philip S. Holzman ◽  
Deborah L. Levy ◽  
Eberhard H. Uhlenhuth ◽  
Leonard R. Proctor ◽  
Daniel X. Freedman

Sign in / Sign up

Export Citation Format

Share Document