Bridge management strategy for a steel plate girder bridge based on minimum total life cycle cost

2001 ◽  
Author(s):  
Kiyoyuki Kaito ◽  
Makoto Abe ◽  
Yasuhiro Koide ◽  
Yozo Fujino
2008 ◽  
Vol 385-387 ◽  
pp. 845-848
Author(s):  
Moe M.S. Cheung ◽  
Kevin K.L. So ◽  
Xue Qing Zhang

This paper proposes a life-cycle cost (LCC) management methodology that integrates corrosion deterioration and fatigue damage mechanisms. This LCC management methodology has four characterized features: (1) corrosion deterioration and fatigue damage models are used to predict the time when the pre-defined limits are reached; (2) the performance of the steel girder is measured by condition state sets in which deflection, moment and shear capacities and fatigue strength limits are considered altogether; (3) the cost-effectiveness of management strategies are measured by the performance improvement per unit of money spent; and (4) the LCC model includes initial design/construction cost, inspection cost, maintenance cost, repair/rehabilitation cost and failure cost. A steel girder bridge is used as an example to demonstrate the application of the proposed LCC management methodology.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Ilaria Venanzi ◽  
Riccardo Castellani ◽  
Laura Ierimonti ◽  
Filippo Ubertini

Stakeholders of civil infrastructures have to usually choose among several design alternatives in order to select a final design representing the best trade-off between safety and economy, in a life-cycle perspective. In this framework, the paper proposes an automated procedure for the estimation of life-cycle repair costs of different bridge design solutions. The procedure provides the levels of safety locally guaranteed by the selected design solution and the related total life-cycle cost. The method is based on the finite element modeling of the bridge and uses design traffic models as suggested by international technical standards. Both the global behavior and the transversal cross section of the bridge are analyzed in order to provide local reliability indexes. Several parameters involved in the design, such as geometry and loads and materials’ characteristics, are considered as uncertain. Degradation models are adopted for steel carpentry and rebars. The application of the procedure to a road bridge case study shows its potential in providing local safety levels for different limit states over the entire lifetime of the bridge and the life-cycle cost of the infrastructure, highlighting the importance of the local character of the life-cycle cost analysis.


2019 ◽  
Vol 10 (4) ◽  
pp. 75
Author(s):  
Md. Shafiqul Islam ◽  
Shayla Sharmin ◽  
Jebunnesa Islam

At present, many road authorities in the world face challenges in condition monitoring diagnosis of distress and forecasting deterioration, strengthening and convalescence of aging bridge structures. The accurate prediction of the future condition is crucial for optimizing the maintenance activities. It is very tough to predict the actual performance scenario or actual in–situ structures without carrying out inspection. Limited availability of detailed inspection data is considered as one of the major drawbacks in developing deterioration models. In State Based Markov deterioration (SNMD) modelling, the main job is to estimate transition probability matrixes (TPMs). In this paper, Markov Chain Monte Carlo (MCMC) is used to estimate TPMs. In Markov Chain Model, future conditions depend on only present bridge inspection data. Multiple repair options are adopted in order to optimize life cycle cost. Repairs are needed when the critical chloride concentration exceeds 0.2. Three distinct types of cost corresponding to each repair option is considered. The objective of this paper is to minimize the life cycle cost considering appropriate repair timings of mixed repair methods. Variation of life cycle cost of five different concretes (stronger to weaker) using three different repair option is shown in this paper. For specific normalized condition of concrete’s failure probability (0.3) and specific type of concrete, variation of life cycle cost using multiple repair options is also shown in this paper.


2001 ◽  
Author(s):  
Hjroshi Furuta ◽  
Dan M. Frangopol ◽  
Michiyuki Hirokane ◽  
Makiko Saito

Sign in / Sign up

Export Citation Format

Share Document