Laser interferometer for calibration of a line scale module with analog output

Author(s):  
Ichiro Fujima ◽  
Yasuaki Fujimoto ◽  
Kaoru Sasaki ◽  
Hideaki Yoshimori ◽  
Shigeo Iwasaki ◽  
...  
2011 ◽  
Vol 5 (2) ◽  
pp. 120-125 ◽  
Author(s):  
Akira Takahashi ◽  

Length measurement was conducted for two years on glass ceramics, Zerodur®and Clearceram®, which have a low coefficient of thermal expansion, and on synthetic quartz. Commercially available glass ceramics were used for evaluating long-term stability, or secular change. Synthetic quartz ensured longterm length measurement stability. Two line scales of 300 mm length made of each material for a total of six line scales were simultaneously manufactured and measured to evaluate dimensional stability variation of the materials over time. Measurements were conducted with a line scale calibration systemdeveloped by Nikon. The calibration system is a onedimensional laser interferometer, featuring reduced Abbe’s errors, laser interferometer paths in a vacuum and real-time wavelength calibration of laser frequency using a 633 nm iodine-stabilized He-Ne laser. Long-term quartz stability was 4.3 nm and 5.4 nm (2σ). The yearly stability coefficients of the two glassceramic scales were -0.22 and -0.23 parts per million per year (ppm/yr) for Zerodur and -0.16 and -0.16 ppm/yr for Clearceram. No significant difference in stability between the two scales was observed for Zerodur or Clearceram.


2009 ◽  
Vol 72 (7) ◽  
pp. 076901 ◽  
Author(s):  
B P Abbott ◽  
R Abbott ◽  
R Adhikari ◽  
P Ajith ◽  
B Allen ◽  
...  

2021 ◽  
Vol 1889 (5) ◽  
pp. 052039
Author(s):  
A A Ignatiev ◽  
E A Sigitov ◽  
V A Dobryakov ◽  
S A Ignatiev ◽  
A A Kazinsky ◽  
...  

2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Massimo Tinto ◽  
Sanjeev V. Dhurandhar

AbstractEqual-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers), the laser noise experiences different delays in the two arms and will hence not directly cancel at the photo detector. To solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI). This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1877
Author(s):  
Nikolai Petrov ◽  
Vladislav Pustovoit

It is highly desirable to have a compact laser interferometer for detecting gravitational waves. Here, a small-sized tabletop laser interferometer with Fabry–Perot resonators consisting of two spatially distributed “mirrors” for detecting gravitational waves is proposed. It is shown that the spectral resolution of 10−23 cm−1 can be achieved at a distance between mirrors of only 1–3 m. The influence of light absorption in crystals on the limiting resolution of such resonators is also studied. A higher sensitivity of the interferometer to shorter-wave laser radiation is shown. A method for detecting gravitational waves is proposed based on the measurement of the correlation function of the radiation intensities of non-zero-order resonant modes from the two arms of the Mach–Zehnder interferometer.


Author(s):  
Aline Iamin Gomide ◽  
Rita de Cássia dos Santos Navarro Silva ◽  
Moysés Nascimento ◽  
Luis Antônio Minim ◽  
Valéria Paula Rodrigues Minim

Sign in / Sign up

Export Citation Format

Share Document