Three-dimensional optical coherence tomography of the human retina in vivo by high-speed transversal scanning

Author(s):  
Christoph K. Hitzenberger ◽  
Peter Trost ◽  
Pak-Wai Lo ◽  
Qienyuan Zhou
2003 ◽  
Vol 11 (21) ◽  
pp. 2753 ◽  
Author(s):  
Christoph K. Hitzenberger ◽  
Peter Trost ◽  
Pak-Wai Lo ◽  
Qienyuan Zhou

2006 ◽  
Author(s):  
Shuichi Makita ◽  
Yosifumi Nakamura ◽  
Yoshiaki Yasuno ◽  
Takashi Endo ◽  
Masahiro Yamanari ◽  
...  

2021 ◽  
Author(s):  
Antonio Mauro

Optical Coherence Tomography (OCT) is an addition to the other tomographic imaging techniques of x-ray computed tomography, magnetic resonance imaging, and ultrasound imaging. OCT uses optical reflections of biological tissues as opposed to x-rays, RF fields, and sound waves to obtain images. A rotary and pullback system has been developed for use with OCT. The system was developed to facilitate the three dimensional imaging of various lumens in humans and animals. The system is capable of rotating at a rate of 200 Hz. At this rate the rotary system will allow for a frame acquisition rate of 200 fps which is significantly higher than the highest published acquisition rate to date of 108 fps. The probes used with the system were modeled after the Intravascular Ultrasound (IVUS) miniature torque cable design. The probes can be sealed and sterilized between subjects without being damaged; unlike the single use IVUS probes. The rotary system was used to image the outer ear of a mouse in vivo. A lateral slice from the resulting three dimensional image was compared to the general histology of a mouse ear. The image compared well to the general anatomy as found on the histology.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shu Zheng ◽  
Yanru Bai ◽  
Zihao Xu ◽  
Pengfei Liu ◽  
Guangjian Ni

Optical coherence tomography (OCT) has become a novel approach to noninvasive imaging in the past three decades, bringing a significant potential to biological research and medical biopsy in situ, particularly in three-dimensional (3D) in vivo conditions. Specifically, OCT systems using broad bandwidth sources, mainly centered at near-infrared-II, allow significantly higher imaging depth, as well as maintain a high-resolution and better signal-to-noise ratio than the traditional microscope, which avoids the scattering blur and thus obtains more details from delicate biological structures not just limited to the surface. Furthermore, OCT systems combined the spectrometer with novel light sources, such as multiplexed superluminescent diodes or ultra-broadband supercontinuum laser sources, to obtain sub-micron resolution imaging with high-speed achieve widespread clinical applications. Besides improving OCT performance, the functional extensions of OCT with other designs and instrumentations, taking polarization state or birefringence into account, have further improved OCT properties and functions. We summarized the conventional principle of OCT systems, including time-domain OCT, Fourier-domain OCT, and several typical OCT extensions, compared their different components and properties, and analyzed factors that affect OCT performance. We also reviewed current applications of OCT in the biomedical field, especially in hearing science, discussed existing limitations and challenges, and looked forward to future development, which may provide a guideline for those with 3D in vivo imaging desires.


2006 ◽  
Vol 14 (26) ◽  
pp. 12902 ◽  
Author(s):  
H. Lim ◽  
M. Mujat ◽  
C. Kerbage ◽  
E. C. W. Lee ◽  
Y. Chen ◽  
...  

2021 ◽  
Author(s):  
Antonio Mauro

Optical Coherence Tomography (OCT) is an addition to the other tomographic imaging techniques of x-ray computed tomography, magnetic resonance imaging, and ultrasound imaging. OCT uses optical reflections of biological tissues as opposed to x-rays, RF fields, and sound waves to obtain images. A rotary and pullback system has been developed for use with OCT. The system was developed to facilitate the three dimensional imaging of various lumens in humans and animals. The system is capable of rotating at a rate of 200 Hz. At this rate the rotary system will allow for a frame acquisition rate of 200 fps which is significantly higher than the highest published acquisition rate to date of 108 fps. The probes used with the system were modeled after the Intravascular Ultrasound (IVUS) miniature torque cable design. The probes can be sealed and sterilized between subjects without being damaged; unlike the single use IVUS probes. The rotary system was used to image the outer ear of a mouse in vivo. A lateral slice from the resulting three dimensional image was compared to the general histology of a mouse ear. The image compared well to the general anatomy as found on the histology.


2005 ◽  
Vol 13 (26) ◽  
pp. 10652 ◽  
Author(s):  
Yoshiaki Yasuno ◽  
Violeta Dimitrova Madjarova ◽  
Shuichi Makita ◽  
Masahiro Akiba ◽  
Atsushi Morosawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document