Spatial and temporal image characteristics of a real-time large area a-Se x-ray detector

Author(s):  
Olivier Tousignant ◽  
Yves Demers ◽  
Luc Laperriere ◽  
Habib Mani ◽  
Philippe Gauthier ◽  
...  
2010 ◽  
Author(s):  
Sung Kyn Heo ◽  
Sung Kyu Park ◽  
Sung Ha Hwang ◽  
Dong Ak Im ◽  
Jari Kosonen ◽  
...  
Keyword(s):  
X Ray ◽  

1986 ◽  
Vol 47 (10) ◽  
pp. 1791-1795 ◽  
Author(s):  
M. Ribet ◽  
S. Gits-Léon ◽  
F. Lefaucheux ◽  
M.C. Robert
Keyword(s):  

2018 ◽  
Vol 2018 (1) ◽  
pp. 162-165
Author(s):  
Shin Mizutani ◽  
Daichi Yamaguchi ◽  
Takeshi Fujiwara ◽  
Masato Yasumoto ◽  
Ryunosuke Kuroda
Keyword(s):  
X Ray ◽  

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 426
Author(s):  
Behrooz Abbasi ◽  
Xiaoliang Wang ◽  
Judith C. Chow ◽  
John G. Watson ◽  
Bijan Peik ◽  
...  

Respirable coal mine dust (RCMD) exposure is associated with black lung and silicosis diseases in underground miners. Although only RCMD mass and silica concentrations are regulated, it is possible that particle size, surface area, and other chemical constituents also contribute to its adverse health effects. This review summarizes measurement technologies for RCMD mass concentrations, morphology, size distributions, and chemical compositions, with examples from published efforts where these methods have been applied. Some state-of-the-art technologies presented in this paper have not been certified as intrinsically safe, and caution should be exerted for their use in explosive environments. RCMD mass concentrations are most often obtained by filter sampling followed by gravimetric analysis, but recent requirements for real-time monitoring by continuous personal dust monitors (CPDM) enable quicker exposure risk assessments. Emerging low-cost photometers provide an opportunity for a wider deployment of real-time exposure assessment. Particle size distributions can be determined by microscopy, cascade impactors, aerodynamic spectrometers, optical particle counters, and electrical mobility analyzers, each with unique advantages and limitations. Different filter media are required to collect integrated samples over working shifts for comprehensive chemical analysis. Teflon membrane filters are used for mass by gravimetry, elements by energy dispersive X-ray fluorescence, rare-earth elements by inductively coupled plasma-mass spectrometry and mineralogy by X-ray diffraction. Quartz fiber filters are analyzed for organic, elemental, and brown carbon by thermal/optical methods and non-polar organics by thermal desorption-gas chromatography-mass spectrometry. Polycarbonate-membrane filters are analyzed for morphology and elements by scanning electron microscopy (SEM) with energy dispersive X-ray, and quartz content by Fourier-transform infrared spectroscopy and Raman spectroscopy.


Author(s):  
Alan Owens ◽  
H Andersson ◽  
M Bavdaz ◽  
L van den Berg ◽  
A Peacock ◽  
...  
Keyword(s):  

2001 ◽  
Vol 7 (S2) ◽  
pp. 1050-1051 ◽  
Author(s):  
S.W. Nam ◽  
D.A. Wollman ◽  
Dale E. Newbury ◽  
G.C. Hilton ◽  
K.D. Irwin ◽  
...  

The high performance of single-pixel microcalorimeter EDS (μ,cal EDS) has been shown to be very useful for a variety of microanalysis cases. The primary advantage of jxcal EDS over conventional EDS is the factor of 25 improvement in energy resolution (∽3 eV in real-time). This level of energy resolution is particularly important for applications such as nanoscale contaminant analysis where it is necessary to resolve peak overlaps at low x-ray energies. Because μcal EDS offers practical solutions to many microanalysis problems, several companies are proceeding with commercialization of single-pixel μal EDS technology. Two drawbacks limiting the application of uxal EDS are its low count rate (∽500 s−1) and small area (∽0.04 mm for a bare single pixel, ∽5 mm2 with a polycapillary optic). We are developing a 32x32 pixel array with a total area of 40 mm2 and with a total count rate between 105 s−1 and 106 s−1.


Sign in / Sign up

Export Citation Format

Share Document