Intensified Charge-Coupled-Device Cameras For A Spatially Resolving Extreme Ultraviolet Spectrometer

1987 ◽  
Vol 26 (8) ◽  
Author(s):  
D. Content ◽  
M. Perry ◽  
D. Wroblewski ◽  
H. W. Moos
2013 ◽  
Vol 79 (5) ◽  
pp. 489-507 ◽  
Author(s):  
R. MILLS ◽  
R. BOOKER ◽  
Y. LU

AbstractUnder a study contracted by GEN3 Partners, spectra of high current pinch discharges in pure hydrogen and helium were recorded in the extreme ultraviolet radiation region at the Harvard Smithsonian Center for Astrophysics (CfA) in an attempt to reproduce experimental results published by BlackLight Power, Inc. (BLP) showing predicted continuum radiation due to hydrogen in the 10–30 nm region (Mills, R. L. and Lu, Y. 2010 Hydrino continuum transitions with cutoffs at 22.8 nm and 10.1 nm. Int. J. Hydrog. Energy35, 8446–8456, doi:10.1016?j.ijhydene.2010.05.098). Alternative explanations were considered to the claimed interpretation of the continuum radiation as being that emitted during transitions of H to lower-energy states (hydrinos). Continuum radiation was observed at CfA in the 10–30 nm region that matched BLP's results. Considering the low energy of 5.2 J per pulse, the observed radiation in the energy range of about 120–40 eV, reference experiments and analysis of plasma gases, cryofiltration to remove contaminants, and spectra of the electrode metal, no conventional explanation was found in the prior or present work to be plausible including contaminants, electrode metal emission, and Bremsstrahlung, ion recombination, molecular or molecular ion band radiation, and instrument artifacts involving radicals and energetic ions reacting at the charge-coupled device and H2 re-radiation at the detector chamber. Moreover, predicted selective extraordinarily high-kinetic energy H was observed by the corresponding Doppler broadening of the Balmer α line.


1997 ◽  
Vol 51 (5) ◽  
pp. 607-616 ◽  
Author(s):  
John W. Olesik ◽  
Jeffery A. Kinzer ◽  
Garrett J. McGowan

An instrument to obtain optical emission and laser-induced fluorescence images of atom or ion clouds, each produced from isolated, monodisperse droplets of sample in an inductively coupled plasma, is described. An excimer laser pumped dye laser is used to produce a large (28-mm × 24-mm) beam for saturated fluorescence from atoms or ions throughout a large portion of the ICP. An intensified charge-coupled device (ICCD) detects optical emission or laser induced fluorescence snapshot images at the focal plane of an aberration-corrected slitless spectrograph. Images produced from a single laser pulse can be detected. Double-exposure emission images with 1-μs gate times can be acquired to monitor the movement of atom or ion clouds produced from a single droplet of sample solution. Variations in the number of atoms or ions produced as a function of time (or height) in the plasma can be monitored. Excitation in the plasma can be assessed from ratios of emission to fluorescence intensities.


2002 ◽  
Vol 68 (11) ◽  
pp. 5737-5740 ◽  
Author(s):  
Ariel Maoz ◽  
Ralf Mayr ◽  
Geraldine Bresolin ◽  
Klaus Neuhaus ◽  
Kevin P. Francis ◽  
...  

ABSTRACT Bioluminescent mutants of Yersinia enterocolitica were generated by transposon mutagenesis using a promoterless, complete lux operon (luxCDABE) derived from Photorhabdus luminescens, and their production of light in the cheese environment was monitored. Mutant B94, which had the lux cassette inserted into an open reading frame of unknown function was used for direct monitoring of Y. enterocolitica cells on cheeses stored at 10°C by quantifying bioluminescence using a photon-counting, intensified charge-coupled device camera. The detection limit on cheese was 200 CFU/cm2. Bioluminescence of the reporter mutant was significantly regulated by its environment (NaCl, temperature, and cheese), as well as by growth phase, via the promoter the lux operon had acquired upon transposition. At low temperatures, mutant B94 did not exhibit the often-reported decrease of photon emission in older cells. It was not necessary to include either antibiotics or aldehyde in the food matrix in order to gain quantitative, reproducible bioluminescence data. As far as we know, this is the first time a pathogen has been monitored in situ, in real time, in a “real-product” status, and at a low temperature.


2017 ◽  
Vol 12 (01) ◽  
pp. P01006-P01006 ◽  
Author(s):  
R. Guirlet ◽  
J.L. Schwob ◽  
O. Meyer ◽  
S. Vartanian

Author(s):  
JEFFREY S. MORGAN ◽  
J. GETHYN TIMOTHY ◽  
DAVID C. SLATER ◽  
MARTIN C.E. HUBER ◽  
GIUSEPPE TONDELLO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document