Label-free optical detection of small-molecule compound microarrays immobilized on solid support using macromolecular scaffolds and subsequent protein binding reactions

Author(s):  
Y. S. Sun ◽  
J. P. Landry ◽  
Y. Y. Fei ◽  
X. D. Zhu ◽  
J. T. Luo ◽  
...  
2011 ◽  
Vol 54 (8) ◽  
pp. 1277-1283 ◽  
Author(s):  
DianMing Zhou ◽  
YiDan Wu ◽  
Pei Liu ◽  
HaoTian Bai ◽  
LiJuan Tang ◽  
...  

2016 ◽  
Vol 88 (4) ◽  
pp. 2375-2379 ◽  
Author(s):  
Guangzhong Ma ◽  
Yan Guan ◽  
Shaopeng Wang ◽  
Han Xu ◽  
Nongjian Tao

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guangzhong Ma ◽  
Runli Liang ◽  
Zijian Wan ◽  
Shaopeng Wang

AbstractQuantification of molecular interactions on a surface is typically achieved via label-free techniques such as surface plasmon resonance (SPR). The sensitivity of SPR originates from the characteristic that the SPR angle is sensitive to the surface refractive index change. Analogously, in another interfacial optical phenomenon, total internal reflection, the critical angle is also refractive index dependent. Therefore, surface refractive index change can also be quantified by measuring the reflectivity near the critical angle. Based on this concept, we develop a method called critical angle reflection (CAR) imaging to quantify molecular interactions on glass surface. CAR imaging can be performed on SPR imaging setups. Through a side-by-side comparison, we show that CAR is capable of most molecular interaction measurements that SPR performs, including proteins, nucleic acids and cell-based detections. In addition, we show that CAR can detect small molecule bindings and intracellular signals beyond SPR sensing range. CAR exhibits several distinct characteristics, including tunable sensitivity and dynamic range, deeper vertical sensing range, fluorescence compatibility, broader wavelength and polarization of light selection, and glass surface chemistry. We anticipate CAR can expand SPR′s capability in small molecule detection, whole cell-based detection, simultaneous fluorescence imaging, and broader conjugation chemistry.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shin-ichiro Hattori ◽  
Nobuyo Higashi-Kuwata ◽  
Hironori Hayashi ◽  
Srinivasa Rao Allu ◽  
Jakka Raghavaiah ◽  
...  

AbstractExcept remdesivir, no specific antivirals for SARS-CoV-2 infection are currently available. Here, we characterize two small-molecule-compounds, named GRL-1720 and 5h, containing an indoline and indole moiety, respectively, which target the SARS-CoV-2 main protease (Mpro). We use VeroE6 cell-based assays with RNA-qPCR, cytopathic assays, and immunocytochemistry and show both compounds to block the infectivity of SARS-CoV-2 with EC50 values of 15 ± 4 and 4.2 ± 0.7 μM for GRL-1720 and 5h, respectively. Remdesivir permitted viral breakthrough at high concentrations; however, compound 5h completely blocks SARS-CoV-2 infection in vitro without viral breakthrough or detectable cytotoxicity. Combination of 5h and remdesivir exhibits synergism against SARS-CoV-2. Additional X-ray structural analysis show that 5h forms a covalent bond with Mpro and makes polar interactions with multiple active site amino acid residues. The present data suggest that 5h might serve as a lead Mpro inhibitor for the development of therapeutics for SARS-CoV-2 infection.


ACS Omega ◽  
2020 ◽  
Vol 5 (39) ◽  
pp. 25358-25364
Author(s):  
Elisa Chiodi ◽  
Allison M. Marn ◽  
Matthew T. Geib ◽  
Fulya Ekiz Kanik ◽  
John Rejman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document