small molecule compound
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 27)

H-INDEX

22
(FIVE YEARS 0)

Author(s):  
Lili Han ◽  
Chen Huang ◽  
Xiaofei Wang ◽  
Dongdong Tong

Abstract Background Dysregulation of RNA binding protein (RBP) expression has been confirmed to be causally linked with tumorigenesis. The detailed biological effect and underlying mechanisms of the RBP GRSF1 in hepatocellular carcinoma (HCC) remain unclear. Methods HCC cells with stable knockdown of GRSF1 were established using two sh-RNA-encoding lentiviruses. The functions of GRSF1 in HCC were explored using MTT, colony formation, flow cytometry, and Transwell assays and a xenograft model. Transcriptomic sequencing in GRSF1-deficient MHCC-97H cells was carried out to identify the downstream effector of GRSF1. The regulatory mechanisms among GRSF1, YY1 and miR-30e-5p were investigated via RNA immunoprecipitation, luciferase, RNA pull-down and ChIP assays. Several in vivo assays were used to assess the selectivity of the small-molecule compound VE-821 in HCC and to confirm the absence of general toxicity in animal models. Results GRSF1 was frequently increased in HCC tissue and cells and was associated with worse clinical outcomes. GRSF1 functions as a novel oncogenic RBP by enhancing YY1 mRNA stability, and the GUUU motifs within the YY1 3`UTR 2663-2847 were the specific binding motifs for GRSF1. YY1 feedback promoted GRSF1 expression by binding to the GRSF1 promoter. In addition, YY1 was a critical target of miR-30e-5p, which was confirmed in this study to inhibit HCC hepatocarcinogenesis. GRSF1 and miR-30e-5p competitively regulated YY1 by binding to its 3`UTR 2663-2847 region. Finally, we identified that VE-821 blocked HCC progression by inhibiting the GRSF1/YY1 pathway. Conclusion This study revealed the interaction network among GRSF1, YY1 and miR-30e-5p, providing new insight into HCC pathogenesis, and indicated that VE821 may serve as a novel agent with potential for HCC treatment through inhibition of the GRSF1/YY1 axis.



2022 ◽  
Vol 12 ◽  
Author(s):  
Lulin Rao ◽  
Yaoguang Sheng ◽  
Jiao Zhang ◽  
Yanlei Xu ◽  
Jingyi Yu ◽  
...  

The resistance of methicillin-resistant Staphylococcus aureus (MRSA) has augmented due to the abuse of antibiotics, bringing about difficulties in the treatment of infection especially with the formation of biofilm. Thus, it is essential to develop antimicrobials. Here we synthesized a novel small-molecule compound, which we termed SYG-180-2-2 (C21H16N2OSe), that had antibiofilm activity. The aim of this study was to demonstrate the antibiofilm effect of SYG-180-2-2 against clinical MRSA isolates at a subinhibitory concentration (4 μg/ml). In this study, it was showed that significant suppression in biofilm formation occurred with SYG-180-2-2 treatment, the inhibition ranged between 65.0 and 85.2%. Subsequently, confocal laser scanning microscopy and a bacterial biofilm metabolism activity assay further demonstrated that SYG-180-2-2 could suppress biofilm. Additionally, SYG-180-2-2 reduced bacterial adhesion and polysaccharide intercellular adhesin (PIA) production. It was found that the expression of icaA and other biofilm-related genes were downregulated as evaluated by RT-qPCR. At the same time, icaR and codY were upregulated when biofilms were treated with SYG-180-2-2. Based on the above results, we speculate that SYG-180-2-2 inhibits the formation of biofilm by affecting cell adhesion and the expression of genes related to PIA production. Above all, SYG-180-2-2 had no toxic effects on human normal alveolar epithelial cells BEAS-2B. Collectively, the small-molecule compound SYG-180-2-2 is a safe and effective antibacterial agent for inhibiting MRSA biofilm.



2021 ◽  
Author(s):  
Yuanyue Li ◽  
Tobias Kind ◽  
Jacob Folz ◽  
Arpana Vaniya ◽  
Sajjan Singh Mehta ◽  
...  


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaolong Tang ◽  
Lizhi Cheng ◽  
Guo Li ◽  
Yong-Ming Yan ◽  
Fengting Su ◽  
...  

AbstractNon-small cell lung cancer (NSCLC) is a deadly and highly prevalent malignancy. Targeting activated-EGFR mutations in NSCLC via EGFR tyrosine kinase inhibitor (EGFR-TKI) initially achieves a profound therapeutic response, but resistance frequently evolves, reducing treatment options. Here, we present a small-molecule compound D6 which selectively inhibits tumor cell growth and migration in NSCLC cells with EGFR-TKI-resistant T790M-EGFR-activated mutations (T790M-EGFR-AM), e.g., L858R/T790M, 19Del/T790M and L858R/T790M/C797S. D6 mimics a natural product isolated from the roots of Codonopsis pilosula and selectively competes with T790M-EGFR-AM to bind to HSP90, thus facilitating the ubiquitination dependent proteasomal degradation of T790M-EGFR-AM. By contrast, D6 has little impact on typical HSP90 chaperone activity, suggesting low systemic toxicity. Promisingly, D6 combined with erlotinib or osimertinib shows efficacy in overcoming the EGFR-TKIs-resistance in NSCLCs. Our study raises an alternative strategy to overcome T790M-mediated EGFR-TKI resistance in NSCLC via targeting the protein–protein interaction of HSP90 and T790M-EGFR by intervention with D6.



2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhuyifan Ye ◽  
Defang Ouyang

AbstractRapid solvent selection is of great significance in chemistry. However, solubility prediction remains a crucial challenge. This study aimed to develop machine learning models that can accurately predict compound solubility in organic solvents. A dataset containing 5081 experimental temperature and solubility data of compounds in organic solvents was extracted and standardized. Molecular fingerprints were selected to characterize structural features. lightGBM was compared with deep learning and traditional machine learning (PLS, Ridge regression, kNN, DT, ET, RF, SVM) to develop models for predicting solubility in organic solvents at different temperatures. Compared to other models, lightGBM exhibited significantly better overall generalization (logS  ± 0.20). For unseen solutes, our model gave a prediction accuracy (logS  ± 0.59) close to the expected noise level of experimental solubility data. lightGBM revealed the physicochemical relationship between solubility and structural features. Our method enables rapid solvent screening in chemistry and may be applied to solubility prediction in other solvents.



2021 ◽  
Vol 12 ◽  
Author(s):  
Shufen Li ◽  
Meidi Ye ◽  
Yuanqiao Chen ◽  
Yulan Zhang ◽  
Jiachen Li ◽  
...  

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus causing serious infectious disease with a high case-fatality of up to 50% in severe cases. Currently, no effective drug has been approved for the treatment of SFTSV infection. Here, we performed a high-throughput screening of a natural extracts library for compounds with activities against SFTSV infection. Three hit compounds, notoginsenoside Ft1, punicalin, and toosendanin were identified for displaying high anti-SFTSV efficacy, in which, toosendanin showed the highest inhibition potency. Mechanistic investigation indicated that toosendanin inhibited SFTSV infection at the step of virus internalization. The anti-viral effect of toosendanin against SFTSV was further verified in mouse infection models, and the treatment with toosendanin significantly reduced viral load and histopathological changes in vivo. The antiviral activity of toosendanin was further expanded to another bunyavirus and the emerging SARS-CoV-2. This study revealed a broad anti-viral effect of toosendanin and indicated its potential to be developed as an anti-viral drug for clinical use.



Author(s):  
Cao Ming Zhuo ◽  
Changda Liu ◽  
Kamal. D. Srivastava ◽  
Adora Lin ◽  
Christopher Lazarski ◽  
...  


Author(s):  
Chen-liang Zhou ◽  
Yi-fan Huang ◽  
Yi-bin Li ◽  
Tai-zhen Liang ◽  
Teng-yi Zheng ◽  
...  

Eliminating the latent HIV reservoir remains a difficult problem for creating an HIV functional cure or achieving remission. The “block-and-lock” strategy aims to steadily suppress transcription of the viral reservoir and lock the HIV promoter in deep latency using latency-promoting agents (LPAs). However, to date, most of the investigated LPA candidates are not available for clinical trials, and some of them exhibit immune-related adverse reactions. The discovery and development of new, active, and safe LPA candidates for an HIV cure are necessary to eliminate residual HIV-1 viremia through the “block-and-lock” strategy. In this study, we demonstrated that a new small-molecule compound, Q308, silenced the HIV-1 provirus by inhibiting Tat-mediated gene transcription and selectively downregulating the expression levels of the facilitated chromatin transcription (FACT) complex. Strikingly, Q308 induced the preferential apoptosis in HIV-1 latently infected cells, indicating that Q308 may reduce the size of the viral reservoir and thus further prevent viral rebound. These findings highlight that Q308 is a novel and safe anti-HIV-1 inhibitor candidate for a functional cure.



2021 ◽  
pp. 153537022110321
Author(s):  
Ying Zhou ◽  
Xiaoyan Xue ◽  
Yanyan Guo ◽  
Huan Liu ◽  
Zheng Hou ◽  
...  

DMB (6,7-dichloro-2-methylsulfonyl-3-Ntert-butylaminoquinoxaline) is a quinoxaline-based compound that has been investigated as a glucagon-like peptide-1 receptor (GLP-1R) agonist. To clarify anti-osteoporosis effect of DMB, an osteoporotic mice model was established by ovariectomy (OVX) operation. The OVX mice were given intraperitoneally DMB, exendin-4 (EX-4), or 17β-estradiol (E2) for two months. Then bone mass and structure, and bone morphometric parameters were examined by micro-CT. Weight gain and food consumption, bone turnover markers, and biomechanical strength of the femur were tested, and bone histomorphometry was analyzed. The food intake and weight gain was obviously reduced by E2 or EX-4, but not DMB. However, DMB or EX-4 treatment obviously inhibited skeletal deterioration and enhanced bone strength. The improvement involved in the increased osteoblast number and level of bone formation markers, and reduced osteoclasts number and level of bone resorption markers. In addition, DMB was found to stimulate osteoblastogenesis-related marker gene expression. These results demonstrated that DMB ameliorated bone loss mainly via induction of bone formation, which suggests that the small molecule compound might be applied to the management of postmenopausal osteoporosis.



2021 ◽  
Vol 11 ◽  
Author(s):  
Pei Zhang ◽  
Xinyi Meng ◽  
Liqun Liu ◽  
Shengzhen Li ◽  
Yang Li ◽  
...  

The high-grade glioma is characterized by cell heterogeneity, gene mutations, and poor prognosis. The deletions and mutations of the tumor suppressor gene PTEN (5%-40%) in glioma patients are associated with worse survival and therapeutic resistance. Characterization of unique prognosis molecular signatures by PTEN status in glioma is still unclear. This study established a novel risk model, screened optimal prognostic signatures, and calculated the risk score for the individual glioma patients with different PTEN status. Screening results revealed fourteen independent prognostic gene signatures in PTEN-wt and three in the -50PTEN-mut subgroup. Moreover, we verified risk score as an independent prognostic factor significantly correlated with tumor malignancy. Due to the higher malignancy of the PTEN-mut gliomas, we explored the independent prognostic signatures (CLCF1, AEBP1, and OS9) for a potential therapeutic target in PTEN-mut glioma. We further separated IDH wild-type glioma patients into GBM and LGG to verify the therapeutic target along with PTEN status, notably, the above screened therapeutic targets are also significant prognostic genes in both IDH-wt/PTEN-mut GBM and LGG patients. We further identified the small molecule compound (+)-JQ1 binds to all three targets, indicating a potential therapy for PTEN-mut glioma. In sum, gene signatures and risk scores in the novel risk model facilitate glioma diagnosis, prognosis prediction, and treatment.



Sign in / Sign up

Export Citation Format

Share Document