Homogeneous label-free fluorescent assay of small molecule-protein interactions using protein binding-inhibited transcription nanomachine

2011 ◽  
Vol 54 (8) ◽  
pp. 1277-1283 ◽  
Author(s):  
DianMing Zhou ◽  
YiDan Wu ◽  
Pei Liu ◽  
HaoTian Bai ◽  
LiJuan Tang ◽  
...  
2005 ◽  
Vol 102 (9) ◽  
pp. 3208-3212 ◽  
Author(s):  
W. U. Wang ◽  
C. Chen ◽  
K.-h. Lin ◽  
Y. Fang ◽  
C. M. Lieber

2011 ◽  
Vol 16 (10) ◽  
pp. 1170-1185 ◽  
Author(s):  
Chun-wa Chung ◽  
Jason Witherington

Bromodomains are structurally conserved protein modules present in a large number of chromatin-associated proteins and in many nuclear histone acetyltransferases. The bromodomain functions as an acetyl-lysine binding domain and has been shown to be pivotal in regulating protein–protein interactions in chromatin-mediated cellular gene transcription, cell proliferation, and viral transcriptional activation. Structural analyses of these modules in complex with acetyl-lysine peptide ligands provide insights into the molecular basis for recognition and ligand selectivity within this epigenetic reader family. However, there are significant challenges in configuring assays to identify inhibitors of these proteins. This review focuses on the progress made in developing methods to identify peptidic and small-molecule ligands using biophysical label-free and biochemical approaches. The advantage of each technique and the results reported are summarized, highlighting the potential applicably to other reader domains and the caveats in translation from simple in vitro systems to a biological context.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guangzhong Ma ◽  
Runli Liang ◽  
Zijian Wan ◽  
Shaopeng Wang

AbstractQuantification of molecular interactions on a surface is typically achieved via label-free techniques such as surface plasmon resonance (SPR). The sensitivity of SPR originates from the characteristic that the SPR angle is sensitive to the surface refractive index change. Analogously, in another interfacial optical phenomenon, total internal reflection, the critical angle is also refractive index dependent. Therefore, surface refractive index change can also be quantified by measuring the reflectivity near the critical angle. Based on this concept, we develop a method called critical angle reflection (CAR) imaging to quantify molecular interactions on glass surface. CAR imaging can be performed on SPR imaging setups. Through a side-by-side comparison, we show that CAR is capable of most molecular interaction measurements that SPR performs, including proteins, nucleic acids and cell-based detections. In addition, we show that CAR can detect small molecule bindings and intracellular signals beyond SPR sensing range. CAR exhibits several distinct characteristics, including tunable sensitivity and dynamic range, deeper vertical sensing range, fluorescence compatibility, broader wavelength and polarization of light selection, and glass surface chemistry. We anticipate CAR can expand SPR′s capability in small molecule detection, whole cell-based detection, simultaneous fluorescence imaging, and broader conjugation chemistry.


Sign in / Sign up

Export Citation Format

Share Document