Monitoring vegetation dynamics with SPOT-VEGETATION NDVI time-series data in Tarim Basin, Xinjiang, China

2009 ◽  
Author(s):  
Hongxiu Wan ◽  
Zhandong Sun ◽  
Yongming Xu
2011 ◽  
Vol 8 (11) ◽  
pp. 3359-3373 ◽  
Author(s):  
C. Höpfner ◽  
D. Scherer

Abstract. Vegetation phenology as well as the current variability and dynamics of vegetation and land cover, including its climatic and human drivers, are examined in a region in north-western Morocco that is nearly 22 700 km2 big. A gapless time series of Normalized Differenced Vegetation Index (NDVI) composite raster data from 29 September 2000 to 29 September 2009 is utilised. The data have a spatial resolution of 250 m and were acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The presented approach allows to compose and to analyse yearly land cover maps in a widely unknown region with scarce validated ground truth data by deriving phenological parameters. Results show that the high temporal resolution of 16 d is sufficient for (a) determining local land cover better than global land cover classifications of Plant Functional Types (PFT) and Global Land Cover 2000 (GLC2000) and (b) for drawing conclusions on vegetation dynamics and its drivers. Areas of stably classified land cover types (i.e. areas that did not change their land cover type) show climatically driven inter- and intra-annual variability with indicated influence of droughts. The presented approach to determine human-driven influence on vegetation dynamics caused by agriculture results in a more than ten times larger area compared with stably classified areas. Change detection based on yearly land cover maps shows a gain of high-productive vegetation (cropland) of about 259.3 km2. Statistically significant inter-annual trends in vegetation dynamics during the last decade could however not be discovered. A sequence of correlations was respectively carried out to extract the most important periods of rainfall responsible for the production of green biomass and for the extent of land cover types. Results show that mean daily precipitation from 1 October to 15 December has high correlation results (max. r2=0.85) on an intra-annual time scale to NDVI percentiles (50 %) of land cover types. Correlation results of mean daily precipitation from 16 September to 15 January and percentage of yearly classified area of each land cover type are medium up to high (max. r2=0.64). In all, an offset of nearly 1.5 months is detected between precipitation rates and NDVI values. High-productive vegetation (cropland) is proved to be mainly rain-fed. We conclude that identification, understanding and knowledge about vegetation phenology, and current variability of vegetation and land cover, as well as prediction methods of land cover change, can be improved using multi-year MODIS NDVI time series data. This study enhances the comprehension of current land surface dynamics and variability of vegetation and land cover in north-western Morocco. It especially offers a quick access when estimating the extent of agricultural lands.


2011 ◽  
Vol 8 (2) ◽  
pp. 3953-3998 ◽  
Author(s):  
C. Höpfner ◽  
D. Scherer

Abstract. Vegetation phenology as well as current variability and dynamics of vegetation and land cover including its climatic and human drivers are examined in a region in north-western Morocco of nearly 22 700 km2. A gapless time series of Normalized Differenced Vegetation Index (NDVI) composite raster data from 29 September 2000 to 29 September 2009 with a spatial resolution of 250 m and acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor is utilised. The presented approach allows to compose and analyse yearly land cover maps in a widely unknown region with scarce validated ground truth data by deriving phenological parameters. Results show that high temporal resolution of 16 d is sufficient (a) for determining land cover better than global land cover classifications of Plant Functional Types (PFT) and Global Land Cover 2000 (GLC2000), and (b) for drawing conclusions on vegetation dynamics and its drivers. Areas of stably classified land cover types show climatically driven inter- and intra-annual variability with indicated influence of droughts. The presented approach to determine human-driven influence on vegetation dynamics caused by agriculture results in a more than ten times larger area compared to the stably classified areas. Change detection based on yearly land cover maps shows a gain of high-productive vegetation (cropland) of about 259.3 km2. However, statistically significant inter-annual trends in vegetation dynamics during the last decade could not be discovered. A sequence of correlations was done to extract the most important period of rainfall for production of green biomass and for the extent of land cover types, respectively. Results show that mean daily precipitation from 1 October to 15 December has high correlation results (max. r2=0.85) at intra-annual time scale to NDVI percentiles (50%) of land cover types. Correlation results of mean daily precipitation from 16 September to 15 January and percentage of yearly classified area of each land cover type are medium up to high (max. r2=0.64). In all, an offset of nearly 1.5 months is detected between precipitation rates and NDVI in 16 d steps. High-productive vegetation (cropland) is proved to be mainly rain-fed. We conclude that identification, understanding and knowledge about vegetation phenology, and current variability of vegetation and land cover as well as prediction methods of land cover change can be improved using multi-year MODIS NDVI time series data. This study enhances the comprehension of current land surface dynamics and variability of vegetation and land cover in north-western Morocco offering a fast access especially for estimating the extent of agricultural lands.


2019 ◽  
Vol 11 (14) ◽  
pp. 1683 ◽  
Author(s):  
Yangchengsi Zhang ◽  
Long Guo ◽  
Yiyun Chen ◽  
Tiezhu Shi ◽  
Mei Luo ◽  
...  

High-precision maps of soil organic carbon (SOC) are beneficial for managing soil fertility and understanding the global carbon cycle. Digital soil mapping plays an important role in efficiently obtaining the spatial distribution of SOC, which contributes to precision agriculture. However, traditional soil-forming factors (i.e., terrain or climatic factors) have weak variability in low-relief areas, such as plains, and cannot reflect the spatial variation of soil attributes. Meanwhile, vegetation cover hinders the acquisition of the direct information of farmland soil. Thus, useful environmental variables should be utilized for SOC prediction and the digital mapping of such areas. SOC has an important effect on crop growth status, and remote sensing data can record the apparent spectral characteristics of crops. The normalized difference vegetation index (NDVI) is an important index reflecting crop growth and biomass. This study used NDVI time series data rather than traditional soil-forming factors to map SOC. Honghu City, located in the middle of the Jianghan Plain, was selected as the study region, and the NDVI time series data extracted from Landsat 8 were used as the auxiliary variables. SOC maps were estimated through stepwise linear regression (SLR), partial least squares regression (PLSR), support vector machine (SVM), and artificial neural network (ANN). Ordinary kriging (OK) was used as the reference model, while root mean square error of prediction (RMSEP) and coefficient of determination of prediction (R2P) were used to evaluate the model performance. Results showed that SOC had a significant positive correlation in July and August (0.17, 0.29) and a significant negative correlation in January, April, and December (−0.23, −0.27, and −0.23) with NDVI time series data. The best model for SOC prediction was generated by ANN, with the lowest RMSEP of 3.718 and highest R2P of 0.391, followed by SVM (RMSEP = 3.753, R2P = 0.361) and PLSR (RMSEP = 4.087, R2P = 0.283). The SLR model was the worst model, with the lowest R2P of 0.281 and highest RMSEP of 3.930. ANN and SVM were better than OK (RMSEP = 3.727, R2P = 0.372), whereas PLSR and SLR were worse than OK. Moreover, the prediction results using single-data NDVI or short time series NDVI showed low accuracy. The effect of the terrain factor on SOC prediction represented unsatisfactory results. All these results indicated that the NDVI time series data can be used for SOC mapping in plain areas and that the ANN model can maximally extract additional associated information between NDVI time series data and SOC. This study presented an effective method to overcome the selection of auxiliary variables for digital soil mapping in plain areas when the soil was covered with vegetation. This finding indicated that the time series characteristics of NDVI were conducive for predicting SOC in plains.


2018 ◽  
Vol 40 ◽  
pp. 34-44 ◽  
Author(s):  
Mingquan Wu ◽  
Wenjiang Huang ◽  
Zheng Niu ◽  
Changyao Wang ◽  
Wang Li ◽  
...  

2004 ◽  
Vol 91 (3-4) ◽  
pp. 332-344 ◽  
Author(s):  
Jin Chen ◽  
Per. Jönsson ◽  
Masayuki Tamura ◽  
Zhihui Gu ◽  
Bunkei Matsushita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document