A forest fire spread fast model based on cellular automaton in spatially heterogeneous area of China

Author(s):  
Tao Sun ◽  
Zhe Chen ◽  
Linghan Zhang ◽  
Qianqing Qin ◽  
Wentong Dong ◽  
...  
2016 ◽  
Vol 15 (1) ◽  
pp. 85-92
Author(s):  
Ágoston Restás

It is commonly known that firefighting is very expensive solution; therefore it isn’t useless to study it by the criteria of efficiency. But the meaning of efficiency for fire managers can be different from the meaning of efficiency for economists. From an economic viewpoint, it is stricter than from a technical view. Method: this research used geometric aspects of the fire spread created rectangular and concentric circles models and used basic mathematic calculations and logical conclusions. Results and discussion: The rectangular model shows the criteria of economic efficiency of firefighting. Moreover, the results from rectangular model can be transferred also to the section of concentric circles model. Based on the concentric circle model we can define both the economic efficiency of fighting forest fire and minimal criteria of successful suppression expressed by the elementary information we have regarding the actual fire.


2017 ◽  
Vol 348 ◽  
pp. 33-43 ◽  
Author(s):  
Zhong Zheng ◽  
Wei Huang ◽  
Songnian Li ◽  
Yongnian Zeng

2018 ◽  
Vol 76 (5) ◽  
pp. 3602-3614 ◽  
Author(s):  
Chundong Lv ◽  
Jia Wang ◽  
Fanfei Zhang

2000 ◽  
Vol 43 (S1) ◽  
pp. 104-112 ◽  
Author(s):  
Qijiang Zhu ◽  
Taizong Rong ◽  
Rui Sun

2018 ◽  
Author(s):  
Inderpreet Kaur ◽  
Anton Butenko ◽  
Gianni Pagnini

Abstract. Fire-spotting is often responsible for a dangerous flare up in the wildfire and causes secondary ignitions isolated from the primary fire zone leading to perilous situations. In this paper a complete physical parametrisation of fire-spotting is presented within a formulation aimed to include random processes into operational fire spread models. This formulation can be implemented into existing operational models as a post-processing scheme at each time step, without calling for any major changes in the original framework. In particular, the efficacy of this formulation has already been shown for wildfire simulators based on an Eulerian moving interface method, namely the Level Set Method (LSM) that forms the baseline of the operational software WRF-SFIRE, and for wildfire simulators based on a Lagrangian front tracking technique, namely the Discrete Event System Specification (DEVS) that forms the baseline of the operational software FOREFIRE. The simple and computationally less expensive parametrisation includes the important parameters necessary for describing the landing behavior of the firebrands. The results from different simulations with a simple model based on the LSM highlight the response of the parametrisation to varying fire intensities, wind conditions and different firebrand radii. The contribution of the firebrands towards increasing the fire perimeter varies according to different concurrent conditions and the simulation results prove to be in agreement with the physical processes. Among the many rigorous approaches available in literature to model the firebrand transport and distribution, the approach presented here proves to be simple yet versatile for application to operational fire spread models.


Author(s):  
Evdokia Sotirova ◽  
Emilia Velizarova ◽  
Stefka Fidanova ◽  
Krassimir Atanassov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document