Poster - Thur Eve - 17: Effect of Heterogeneities Due to Kilo-Voltage Photon Beam Energy in Small-Animal Irradiation: A Monte Carlo Evaluation

2010 ◽  
Vol 37 (7Part2) ◽  
pp. 3889-3889
Author(s):  
J Chow ◽  
P Lindsay ◽  
M Leung ◽  
D Jaffray
2010 ◽  
Vol 37 (10) ◽  
pp. 5322-5329 ◽  
Author(s):  
James C. L. Chow ◽  
Michael K. K. Leung ◽  
Patricia E. Lindsay ◽  
David A. Jaffray

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 920 ◽  
Author(s):  
Aniza Abdulle ◽  
James C. L. Chow

Our team evaluated contrast enhancement for portal imaging using Monte Carlo simulation in nanoparticle-enhanced radiotherapy. Dependencies of percentage contrast enhancement on flattening-filter (FF) and flattening-filter-free (FFF) photon beams were determined by varying the nanoparticle material (gold, platinum, iodine, silver, iron oxide), nanoparticle concentration (3–40 mg/mL) and photon beam energy (6 and 10 MV). Phase-space files and energy spectra of the 6 MV FF, 6 MV FFF, 10 MV FF and 10 MV FFF photon beams were generated based on a Varian TrueBeam linear accelerator. We found that gold and platinum nanoparticles (NP) produced the highest contrast enhancement for portal imaging, compared to other NP with lower atomic numbers. The maximum percentage contrast enhancements for the gold and platinum NP were 18.9% and 18.5% with a concentration equal to 40 mg/mL. The contrast enhancement was also found to increase with the nanoparticle concentration. The maximum rate of increase of contrast enhancement for the gold NP was equal to 0.29%/mg/mL. Using the 6 MV photon beams, the maximum contrast enhancements for the gold NP were 79% (FF) and 78% (FFF) higher than those using the 10 MV beams. For the FFF beams, the maximum contrast enhancements for the gold NP were 53.6% (6 MV) and 53.8% (10 MV) higher than those using the FF beams. It is concluded that contrast enhancement for portal imaging can be increased when a higher atomic number of NP, higher nanoparticle concentration, lower photon beam energy and no flattening filter of photon beam are used in nanoparticle-enhanced radiotherapy.


2018 ◽  
Vol 9 (6S) ◽  
pp. 246
Author(s):  
N. A. Rabaiee ◽  
M. Z. A. Aziz ◽  
R. Hashim ◽  
R. Abdullah ◽  
A. L. Yusoff ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1889
Author(s):  
Arthur Bongrand ◽  
Charbel Koumeir ◽  
Daphnée Villoing ◽  
Arnaud Guertin ◽  
Ferid Haddad ◽  
...  

Proton therapy (PRT) is an irradiation technique that aims at limiting normal tissue damage while maintaining the tumor response. To study its specificities, the ARRONAX cyclotron is currently developing a preclinical structure compatible with biological experiments. A prerequisite is to identify and control uncertainties on the ARRONAX beamline, which can lead to significant biases in the observed biological results and dose–response relationships, as for any facility. This paper summarizes and quantifies the impact of uncertainty on proton range, absorbed dose, and dose homogeneity in a preclinical context of cell or small animal irradiation on the Bragg curve, using Monte Carlo simulations. All possible sources of uncertainty were investigated and discussed independently. Those with a significant impact were identified, and protocols were established to reduce their consequences. Overall, the uncertainties evaluated were similar to those from clinical practice and are considered compatible with the performance of radiobiological experiments, as well as the study of dose–response relationships on this proton beam. Another conclusion of this study is that Monte Carlo simulations can be used to help build preclinical lines in other setups.


2021 ◽  
pp. 1-14
Author(s):  
Tiffany M. Shader ◽  
Theodore P. Beauchaine

Abstract Growth mixture modeling (GMM) and its variants, which group individuals based on similar longitudinal growth trajectories, are quite popular in developmental and clinical science. However, research addressing the validity of GMM-identified latent subgroupings is limited. This Monte Carlo simulation tests the efficiency of GMM in identifying known subgroups (k = 1–4) across various combinations of distributional characteristics, including skew, kurtosis, sample size, intercept effect size, patterns of growth (none, linear, quadratic, exponential), and proportions of observations within each group. In total, 1,955 combinations of distributional parameters were examined, each with 1,000 replications (1,955,000 simulations). Using standard fit indices, GMM often identified the wrong number of groups. When one group was simulated with varying skew and kurtosis, GMM often identified multiple groups. When two groups were simulated, GMM performed well only when one group had steep growth (whether linear, quadratic, or exponential). When three to four groups were simulated, GMM was effective primarily when intercept effect sizes and sample sizes were large, an uncommon state of affairs in real-world applications. When conditions were less ideal, GMM often underestimated the correct number of groups when the true number was between two and four. Results suggest caution in interpreting GMM results, which sometimes get reified in the literature.


2021 ◽  
Vol 82 ◽  
pp. 122-133
Author(s):  
Shadab Momin ◽  
James L. Gräfe ◽  
Konstantinos Georgiou ◽  
Rao F. Khan

Sign in / Sign up

Export Citation Format

Share Document