flattening filter
Recently Published Documents


TOTAL DOCUMENTS

739
(FIVE YEARS 134)

H-INDEX

36
(FIVE YEARS 4)

Author(s):  
Brennen Dobberthien ◽  
Fred Cao ◽  
Yingli Zhao ◽  
Eric Harvey ◽  
Genoveva Badragan

Abstract External beam radiotherapy often includes the use of field sizes 3 × 3 cm2 or less, which can be defined as small fields. Dosimetry is a difficult, yet important part of the radiotherapy process. The dosimetry of small fields has additional challenges, which can lead to treatment inconsistencies if not done properly. Most important is the use of an appropriate detector, as well as the application of the necessary corrections. The International Atomic Energy Agency and the American Association of Physicists in Medicine provide the International Code of Practice (CoP) TRS-483 for the dosimetry of small static fields used in external MV photon beams. It gives guidelines on how to apply small-field correction factors for small field dosimetry. The purpose of this study was to evaluate the impact of inaccurate small-field output factors on clinical brain stereotactic radiosurgery plans with and without applying the small-field correction factors as suggested in the CoP. Small-field correction factors for a Varian TrueBeam linear accelerator were applied to uncorrected relative dose factors. Uncorrected and corrected clinical plans were created with two different beam configurations, 6 MV with a flattening filter (6 WFF) and 6 MV without a flattening filter (6 FFF). For the corrected plans, the planning target volume mean dose was 1.6 ± 0.9% lower with p < 0.001 for 6 WFF and 1.8 ± 1.5% lower with p < 0.001 for 6 FFF. For brainstem, a major organ at risk, the corrected plans had a dose that was 1.6 ± 0.9% lower with p = 0.03 for 6 WFF and 1.8 ± 1.5% lower with p = 0.10 for 6 FFF. This represents a systematic error that should and can be corrected.


2021 ◽  
Vol 27 (4) ◽  
pp. 299-302
Author(s):  
Hideharu Miura ◽  
Fumika Takeichi ◽  
Tsubasa Enosaki ◽  
Kiyoshi Yamada ◽  
Shuichi Ozawa ◽  
...  

Abstract Purpose: This study was conducted to demonstrate the feasibility of X-ray output constancy quality assurance (QA) of a linear accelerator for various gantry angles using the Stealth Chamber. Methods: The X-ray output constancy of a Varian TrueBeam STx was evaluated under various gantry angles and a 10 × 10 cm2 field size using a Stealth Chamber. Specifically, 10X and 10X-flattening-filter-free beams with dose rates of 600 and 2400 monitor units (MU)/min, respectively, were used. The Stealth Chamber was attached to the gantry head, and irradiation was performed every 45° for gantry angles of 0-315°. To evaluate the variations in the output constancy with respect to the gantry angle, the acquired values were normalized to the value corresponding to a 0° gantry angle. The obtained results were utilized to determine the correction factors for all gantry angles. To verify the correction factors, additional measurements were performed for five days. Results: The maximum variation in the output constancy measurement relative to the output constancy at a 0° gantry angle was found to be approximately 4.0% for both energy beams at a gantry angle of 180°. Furthermore, the measured values were dependent on the gantry angle. Upon applying the correction factor, the variation in the output constancy with respect to the gantry angle was less than 0.5%. Conclusions: Output constancy QA using the Stealth Chamber for various gantry angles was found to be feasible with the application of a correction factor.


Author(s):  
Mohammad Mohammadzadeh ◽  
Hosein Ghiasi

Purpose: The current study aimed to estimate photon skyshine dose rate from a Varian linac equippedwith a Flattening Filter (FF) and its FF-Free (FFF) mode. The skyshine photons from a Linac bunker can influence the radiation dose received by personnel and the public in radiation therapy centers. Materials and Methods: In the current study skyshine dose from the conventional flattened beam and the flattening-free beam were compared. The MCNPX Monte Carlo code was used to model an18 MeV photon beam of Varian linac. The skyshine radiation was calculated for FF and FFF linac photon beams at the control room, parking, sidewalk, and corridor around the linac room. Results: For the conventional beam, the skyshine dose rates of 0.53, 0.42, 0.45, and 0.50 mSv/h were estimated for the control room, corridor, sidewalk, and parking, respectively. While for the FFF beam, dose rates of 0.21, 0.20, 0.20, and 0.23 mSv/h were estimated for the same positions, respectively. The results indicated that the empirical method of NCRP 151 can not distinguish between FF and FFF beams in skyshine dose calculations. Our results found a 50% lower level dose rate from the FFF beam at distant and nearby locations. Conclusion: The findings of current can be helpful in the radiation dose calculations and the radiation protection designation of radiation therapy bunkers. 


2021 ◽  
Vol 161 ◽  
pp. S1492-S1493
Author(s):  
I. Remmerts de Vries ◽  
M. Dahele ◽  
H. Mostafavi ◽  
B. Slotman ◽  
W. Verbakel

Sign in / Sign up

Export Citation Format

Share Document