Comment on ‘‘Entropy production and the second law of thermodynamics: An introduction to second law analysis’’ by Thomas V. Marcella [Am. J. Phys. 60, 888–895 (1992)]

1994 ◽  
Vol 62 (1) ◽  
pp. 92-92 ◽  
Author(s):  
Robert E. Reynolds
2021 ◽  
Author(s):  
sungguen ryu ◽  
Rosa Lopez ◽  
L Serra ◽  
David Sanchez

Abstract Classically, the power generated by an ideal thermal machine cannot be larger than the Carnot limit. This profound result is rooted in the second law of thermodynamics. A hot question is whether this bound is still valid for microengines operating far from equilibrium. Here, we demonstrate that a quantum chiral conductor driven by AC voltage can indeed work with efficiencies much larger than the Carnot bound. The system also extracts work from common temperature baths, violating Kelvin-Planck statement. Nonetheless, with the proper definition, entropy production is always positive and the second law is preserved. The crucial ingredients to obtain efficiencies beyond the Carnot limit are: i) irreversible entropy production by the photoassisted excitation processes due to the AC field and ii) absence of power injection thanks to chirality. Our results are relevant in view of recent developments that use small conductors to test the fundamental limits of thermodynamic engines.


Author(s):  
B. B. Sahoo ◽  
U. K. Saha ◽  
N. Sahoo ◽  
P. Prusty

The fuel efficiency of a modern diesel engine has decreased due to the recent revisions to emission standards. For an engine fuel economy, the engine speed is to be optimum for an exact throttle opening (TO) position. This work presents an analysis of throttle opening variation impact on a multi-cylinder, direct injection diesel engine with the aid of Second Law of thermodynamics. For this purpose, the engine is run for different throttle openings with several load and speed variations. At a steady engine loading condition, variation in the throttle openings has resulted in different engine speeds. The Second Law analysis, also called ‘Exergy’ analysis, is performed for these different engine speeds at their throttle positions. The Second Law analysis includes brake work, coolant heat transfer, exhaust losses, exergy efficiency, and airfuel ratio. The availability analysis is performed for 70%, 80%, and 90% loads of engine maximum power condition with 50%, 75%, and 100% TO variations. The data are recorded using a computerized engine test unit. Results indicate that the optimum engine operating conditions for 70%, 80% and 90% engine loads are 2000 rpm at 50% TO, 2300 rpm at 75% TO and 3250 rpm at 100% TO respectively.


Author(s):  
Ali Gholizadeh ◽  
M. B. Shafii ◽  
M. H. Saidi

In modeling and designing micro combined heat and power cycle most important point is recognition of how the cycle operates based on the first and second laws of thermodynamics simultaneously. Analyzing data obtained from thermodynamic analysis employed to optimize MCHP cycle. The data obtained from prime mover optimization has been used for basic stimulus cycle. Assumptions considered for prime mover optimization has been improved, for example in making optimum operation condition by using genetic algorithms constant pressure combustion chamber was considered. The exact value of downstream and upstream pressure changes in the combustion chamber reaction has been obtained. After extraction of the appropriate relationship for the primary stimulus cycle, data required for the overall cycle analysis identified, By using these data optimum total cycle efficiency and constructing the first and second laws of thermodynamics has been calculated for it. After reviewing Thermodynamic governing relations in each cycle and using the optimum values that the prime mover has been optimized with, other cycles have been optimized. In best performance condition of cycle, electrical efficiency was 41 percent and the overall efficiency of the cycle was 88 percent, respectively. After using the second law of thermodynamics mathematical model Second law of thermodynamics efficiency and entropy production rate was estimated. Second law of thermodynamics yield best performance against the 45.14 percent and the rate of entropy production in this case equal to 0.099 kW/K respectively.


2005 ◽  
Vol 05 (02) ◽  
pp. C23-C24
Author(s):  
THEO M. NIEUWENHUIZEN ◽  
ARMEN E. ALLAHVERDYAN

In a recent paper Wang et al. [1] report for a colloidal system the entropy production in individual particle trajectories. Some of the trajectories have a negative production, and this is claimed to violate the second law. We stressed that the second law only demands the entropy production averaged over all trajectories to be positive, and this is the case for the data of Wang et al.


Author(s):  
Marius Grübel ◽  
Markus Schatz ◽  
Damian M. Vogt

A numerical second law analysis is performed to determine the entropy production due to irreversibilities in condensing steam flows. In the present work the classical approach to calculate entropy production rates in turbulent flows based on velocity and temperature gradients is extended to two-phase condensing flows modeled within an Eulerian-Eulerian framework. This requires some modifications of the general approach and the inclusion of additional models to account for thermodynamic and kinematic relaxation processes. With this approach, the entropy production within each mesh element is obtained. In addition to the quantification of thermodynamic and kinematic wetness losses, a breakdown of aerodynamic losses is possible to allow for a detailed loss analysis. The aerodynamic losses are classified into wake mixing, boundary layer and shock losses. The application of the method is demonstrated by means of the flow through a well known steam turbine cascade test case. Predicted variations of loss coefficients for different operating conditions can be confirmed by experimental observations. For the investigated test cases, the thermodynamic relaxation contributes the most to the total losses and the losses due to droplet inertia are only of minor importance. The variation of the predicted aerodynamic losses for different operating conditions is as expected and demonstrates the suitability of the approach.


Author(s):  
Marius Grübel ◽  
Markus Schatz ◽  
Damian M. Vogt

A numerical second law analysis is performed to determine the entropy production due to irreversibilities in condensing steam flows. In the present work, the classical approach to calculate entropy production rates in turbulent flows based on velocity and temperature gradients is extended to two-phase condensing flows modeled within an Eulerian–Eulerian framework. This requires some modifications of the general approach and the inclusion of additional models to account for thermodynamic and kinematic relaxation processes. With this approach, the entropy production within each mesh element is obtained. In addition to the quantification of thermodynamic and kinematic wetness losses, a breakdown of aerodynamic losses is possible to allow for a detailed loss analysis. The aerodynamic losses are classified into wake mixing, boundary layer, and shock losses. The application of the method is demonstrated by means of the flow through a well-known steam turbine cascade test case. Predicted variations of loss coefficients for different operating conditions can be confirmed by experimental observations. For the investigated test cases, the thermodynamic relaxation contributes the most to the total losses and the losses due to droplet inertia are only of minor importance. The variation of the predicted aerodynamic losses for different operating conditions is as expected and demonstrates the suitability of the approach.


1981 ◽  
Vol 103 (1) ◽  
pp. 23-28 ◽  
Author(s):  
A. Bejan ◽  
D. W. Kearney ◽  
F. Kreith

The second law of thermodynamics is used to analyze the potential for exergy conservation in solar collector systems. It is shown that the amount of useful energy (exergy) delivered by solar collector systems is affected by heat transfer irreversibilities occurring between the sun and the collector, between the collector and the ambient air, and inside the collector. Using as working examples an isothermal collector, a nonisothermal collector, and the design of the collector-user heat exchanger, the optimum operating conditions for minimum heat transfer irreversibility (maximum exergy delivery) are derived.


Sign in / Sign up

Export Citation Format

Share Document