Determination of equivalent sound speed profiles for ray tracing in near-ground sound propagation

2007 ◽  
Vol 122 (3) ◽  
pp. 1391-1403 ◽  
Author(s):  
John M. Prospathopoulos ◽  
Spyros G. Voutsinas
Author(s):  
Wei Huang ◽  
Mingliu Liu ◽  
Deshi Li ◽  
Feng Yin ◽  
Haole Chen ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hyun Wook Moon ◽  
Woojoong Kim ◽  
Sewoong Kwon ◽  
Jaeheung Kim ◽  
Young Joong Yoon

A simple and exact closed-form equation to determine a penetrated ray path in a ray tracing is proposed for an accurate channel prediction in indoor environments. Whereas the penetrated ray path in a conventional ray tracing is treated as a straight line without refraction, the proposed method is able to consider refraction through the wall in the penetrated ray path. Hence, it improves the accuracy in ray tracing simulation. To verify the validation of the proposed method, the simulated results of conventional method, approximate method, and proposed method are compared with the measured results. The comparison shows that the proposed method is in better agreement with the measured results than the conventional method and approximate method, especially in high frequency bands.


1992 ◽  
Vol 92 (3) ◽  
pp. 1564-1568 ◽  
Author(s):  
Hiroyuki Hachiya ◽  
Shigeo Ohtsuki ◽  
Motonao Tanaka ◽  
Floyd Dunn

2014 ◽  
Vol 577 ◽  
pp. 1198-1201
Author(s):  
Zhang Liang ◽  
Chun Xia Meng ◽  
Hai Tao Xiao

The physical characteristics are compared between shallow and deep water, in physics and acoustics, respectively. There is a specific sound speed profile in deep water, which is different from which in shallow water, resulting in different sound propagation law between them. In this paper, the sound field distributions are simulated under respective typical sound speed profile. The color figures of sound intensity are obtained, in which the horizontal ordinate is distance, and the vertical ordinate is depth. Then we can get some important characteristics of sound propagation. The results show that the seabed boundary is an important influence on sound propagation in shallow water, and sound propagation loss in deep water convergent zone is visibly less than which in spherical wave spreading. We can realize the remote probing using the acoustic phenomenon.


Sign in / Sign up

Export Citation Format

Share Document