scholarly journals Estimating vowel formant discrimination thresholds using a single-interval classification task

2009 ◽  
Vol 125 (4) ◽  
pp. 2323-2335 ◽  
Author(s):  
Eric Oglesbee ◽  
Diane Kewley-Port
2005 ◽  
Vol 118 (3) ◽  
pp. 1929-1930
Author(s):  
Diane Kewley‐Port ◽  
Eric Oglesbee ◽  
Jae Hee Lee

2018 ◽  
Vol 7 (4) ◽  
pp. 603-622 ◽  
Author(s):  
Leonardo Gutiérrez-Gómez ◽  
Jean-Charles Delvenne

Abstract Several social, medical, engineering and biological challenges rely on discovering the functionality of networks from their structure and node metadata, when it is available. For example, in chemoinformatics one might want to detect whether a molecule is toxic based on structure and atomic types, or discover the research field of a scientific collaboration network. Existing techniques rely on counting or measuring structural patterns that are known to show large variations from network to network, such as the number of triangles, or the assortativity of node metadata. We introduce the concept of multi-hop assortativity, that captures the similarity of the nodes situated at the extremities of a randomly selected path of a given length. We show that multi-hop assortativity unifies various existing concepts and offers a versatile family of ‘fingerprints’ to characterize networks. These fingerprints allow in turn to recover the functionalities of a network, with the help of the machine learning toolbox. Our method is evaluated empirically on established social and chemoinformatic network benchmarks. Results reveal that our assortativity based features are competitive providing highly accurate results often outperforming state of the art methods for the network classification task.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Sotaro Sugishita

Abstract We consider entanglement of first-quantized identical particles by adopting an algebraic approach. In particular, we investigate fermions whose wave functions are given by the Slater determinants, as for singlet sectors of one-matrix models. We show that the upper bounds of the general Rényi entropies are N log 2 for N particles or an N × N matrix. We compute the target space entanglement entropy and the mutual information in a free one-matrix model. We confirm the area law: the single-interval entropy for the ground state scales as $$ \frac{1}{3} $$ 1 3 log N in the large N model. We obtain an analytical $$ \mathcal{O}\left({N}^0\right) $$ O N 0 expression of the mutual information for two intervals in the large N expansion.


2020 ◽  
Vol 6 (s1) ◽  
Author(s):  
Tyler Kendall ◽  
Charlotte Vaughn

AbstractThis paper contributes insight into the sources of variability in vowel formant estimation, a major analytic activity in sociophonetics, by reviewing the outcomes of two simulations that manipulated the settings used for linear predictive coding (LPC)-based vowel formant estimation. Simulation 1 explores the range of frequency differences obtained when minor adjustments are made to LPC settings, and measurement timepoints around the settings used by trained analysts, in order to determine the range of variability that should be expected in sociophonetic vowel studies. Simulation 2 examines the variability that emerges when LPC settings are varied combinatorially around constant default settings, rather than settings set by trained analysts. The impacts of different LPC settings are discussed as a way of demonstrating the inherent properties of LPC-based formant estimation. This work suggests that differences more fine-grained than about 10 Hz in F1 and 15–20 Hz in F2 are within the range of LPC-based formant estimation variability.


Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1333-1337
Author(s):  
Thomas I Milac ◽  
Frederick R Adler ◽  
Gerald R Smith

Abstract We have determined the marker separations (genetic distances) that maximize the probability, or power, of detecting meiotic recombination deficiency when only a limited number of meiotic progeny can be assayed. We find that the optimal marker separation is as large as 30–100 cM in many cases. Provided the appropriate marker separation is used, small reductions in recombination potential (as little as 50%) can be detected by assaying a single interval in as few as 100 progeny. If recombination is uniformly altered across the genomic region of interest, the same sensitivity can be obtained by assaying multiple independent intervals in correspondingly fewer progeny. A reduction or abolition of crossover interference, with or without a reduction of recombination proficiency, can be detected with similar sensitivity. We present a set of graphs that display the optimal marker separation and the number of meiotic progeny that must be assayed to detect a given recombination deficiency in the presence of various levels of crossover interference. These results will aid the optimal design of experiments to detect meiotic recombination deficiency in any organism.


Sign in / Sign up

Export Citation Format

Share Document