Passive structural health monitoring of a high-speed naval ship from ambient vibrations

2011 ◽  
Vol 129 (5) ◽  
pp. 2991-2999 ◽  
Author(s):  
Karim G. Sabra ◽  
Steven Huston
Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2778 ◽  
Author(s):  
Mohsen Azimi ◽  
Armin Eslamlou ◽  
Gokhan Pekcan

Data-driven methods in structural health monitoring (SHM) is gaining popularity due to recent technological advancements in sensors, as well as high-speed internet and cloud-based computation. Since the introduction of deep learning (DL) in civil engineering, particularly in SHM, this emerging and promising tool has attracted significant attention among researchers. The main goal of this paper is to review the latest publications in SHM using emerging DL-based methods and provide readers with an overall understanding of various SHM applications. After a brief introduction, an overview of various DL methods (e.g., deep neural networks, transfer learning, etc.) is presented. The procedure and application of vibration-based, vision-based monitoring, along with some of the recent technologies used for SHM, such as sensors, unmanned aerial vehicles (UAVs), etc. are discussed. The review concludes with prospects and potential limitations of DL-based methods in SHM applications.


2020 ◽  
Vol 10 (3) ◽  
pp. 839 ◽  
Author(s):  
Tzu-Kang Lin ◽  
Yu-Ching Chen

This study developed a structural health monitoring (SHM) system based on refined composite multiscale cross-sample entropy (RCMCSE) and an artificial neural network for monitoring structures under ambient vibrations. RCMCSE was applied to enhance the reliability of entropy estimations. First, RCMCSE was implemented to extract damage features, and finite element analysis software was then used to generate training samples, which included stiffness reductions to achieve various damage patterns. A neural network model was constructed and trained using entropy values for these damage patterns. An experiment was conducted on a seven-story steel benchmark structure to validate the performance of the proposed system. Additionally, a confusion matrix was established to evaluate the performance of the proposed system. The results obtained for a scaled-down benchmark structure indicated that 89.8% of the floors were accurately classified, and 90% of the practical damaged floors were correctly diagnosed. The performance evaluation demonstrated that the proposed SHM system exhibited increased damage location accuracy.


Sign in / Sign up

Export Citation Format

Share Document