Specificity of learning in an auditory temporal‐order task

2000 ◽  
Vol 107 (5) ◽  
pp. 2882-2882
Author(s):  
Beverly A. Wright ◽  
Julia A. Mossbridge
2021 ◽  
pp. 174702182110184
Author(s):  
Lynn Huestegge ◽  
Mareike A Hoffmann ◽  
Tilo Strobach

In situations requiring the execution of two tasks at around the same time, we need to decide which of the tasks should be executed first. Previous research has revealed several factors that affect the outcome of such response order control processes, including bottom-up factors (e.g., the temporal order of the stimuli associated with the two tasks) and top-down factors (e.g., instructions). In addition, it has been shown that tasks associated with certain response modalities are preferably executed first (e.g., temporal prioritisation of tasks involving oculomotor responses). In this study, we focused on a situation in which task order has to be unpredictably switched from trial to trial and asked whether task-order representations are coded separately or integrated with the component task sets (i.e., in a task-specific manner). Across three experiments, we combined two tasks known to differ in prioritisation, namely an oculomotor and a manual (or pedal) task. The results indicated robust task-order switch costs (i.e., longer RTs when task order was switched vs. repeated). Importantly, the data demonstrate that it is possible to show an asymmetry of task-order switch costs: While these costs were of similar size for both task orders in one particular experimental setting with specific spatial task characteristics, two experiments consistently indicated that it was easier for participants to switch to their prioritised task order (i.e., to execute the dominant oculomotor task first). This suggests that in a situation requiring frequent task-order switches (indicated by unpredictable changes in stimulus order), task order is represented in an integrated, task-specific manner, bound to characteristics (here, associated effector systems) of the component tasks.


2020 ◽  
Vol 8 (3-4) ◽  
pp. 239-253
Author(s):  
Daniel Poole ◽  
Kyle J. Lees ◽  
Luke A. Jones

Brief periods of repetitive stimulation (click trains) presented either contiguous or simultaneous to an interval have been previously shown to impact on its perceived duration. In the current investigation we asked whether the perception of temporal order can be altered in a similar way. Participants completed a dichotic spectral temporal order judgement task with the stimuli titrated to their individual thresholds. Immediately prior to the judgement, participants were presented with five seconds of click trains, white noise or silence. We extended previous work on this topic by using each participant’s accuracy and response time data to estimate diffusion model parameters so that the cognitive mechanisms underlying any effect of click trains on the response could be disentangled. There was no effect of stimulation condition on participant’s accuracy, or diffusion model parameters (drift rate, boundary separation or non-decision time). The present findings therefore suggest that click trains do not influence temporal order perception. Additionally, the previous suggestion that click trains induce an increase in the rate of information processing was not supported for this temporal order task. Further work probing the limits and conditions of the click train effect will help to constrain and extend theoretical accounts of subjective timing.


Author(s):  
Dana Ganor-Stern

Past research has shown that numbers are associated with order in time such that performance in a numerical comparison task is enhanced when number pairs appear in ascending order, when the larger number follows the smaller one. This was found in the past for the integers 1–9 ( Ben-Meir, Ganor-Stern, & Tzelgov, 2013 ; Müller & Schwarz, 2008 ). In the present study we explored whether the advantage for processing numbers in ascending order exists also for fractions and negative numbers. The results demonstrate this advantage for fraction pairs and for integer-fraction pairs. However, the opposite advantage for descending order was found for negative numbers and for positive-negative number pairs. These findings are interpreted in the context of embodied cognition approaches and current theories on the mental representation of fractions and negative numbers.


2000 ◽  
Author(s):  
Harvey Babkoff ◽  
Elisheva Ben-Artzi ◽  
Leah Fostick

2010 ◽  
Author(s):  
Shachar Ben-Meir ◽  
Dana Ganor-Stern ◽  
Joseph Tzelgov
Keyword(s):  

2006 ◽  
Author(s):  
Elke E. van der Meer ◽  
Susanne Raisig ◽  
Herbert Hagendorf

Sign in / Sign up

Export Citation Format

Share Document