Low-dimensional modelling of sound generation by a flow past a bluff body

2012 ◽  
Vol 131 (4) ◽  
pp. 3428-3428
Author(s):  
K. H. Seid ◽  
Randolph C. K. Leung ◽  
Garret C. Y. Lam
1992 ◽  
Vol 241 ◽  
pp. 443-467 ◽  
Author(s):  
A. Neish ◽  
F. T. Smith

The basic model problem of separation as predicted by the time-mean boundary-layer equations is studied, with the Cebeci-Smith model for turbulent stresses. The changes between laminar and turbulent flow are investigated by means of a turbulence ‘factor’ which increases from zero for laminar flow to unity for the fully turbulent regime. With an attached-flow starting point, a small increase in the turbulence factor above zero is found to drive the separation singularity towards the trailing edge or rear stagnation point for flow past a circular cylinder, according to both computations and analysis. A separated-flow starting point is found to produce analogous behaviour for the separation point. These findings lead to the suggestion that large-scale separation need not occur at all in the fully turbulent regime at sufficiently high Reynolds number; instead, separation is of small scale, confined near the trailing edge. Comments on the generality of this suggestion are presented, along with some supporting evidence from other computations. Further, the small scale involved theoretically has values which seem reasonable in practical terms.


1991 ◽  
Vol 113 (3) ◽  
pp. 384-398 ◽  
Author(s):  
M. P. Arnal ◽  
D. J. Goering ◽  
J. A. C. Humphrey

The characteristics of the flow around a bluff body of square cross-section in contact with a solid-wall boundary are investigated numerically using a finite difference procedure. Previous studies (Taneda, 1965; Kamemoto et al., 1984) have shown qualitatively the strong influence of solid-wall boundaries on the vortex-shedding process and the formation of the vortex street downstream. In the present study three cases are investigated which correspond to flow past a square rib in a freestream, flow past a rib on a fixed wall and flow past a rib on a sliding wall. Values of the Reynolds number studied ranged from 100 to 2000, where the Reynolds number is based on the rib height, H, and bulk stream velocity, Ub. Comparisons between the sliding-wall and fixed-wall cases show that the sliding wall has a significant destabilizing effect on the recirculation region behind the rib. Results show the onset of unsteadiness at a lower Reynolds number for the sliding-wall case (50 ≤ Recrit ≤100) than for the fixed-wall case (Recrit≥100). A careful examination of the vortex-shedding process reveals similarities between the sliding-wall case and both the freestream and fixed-wall cases. At moderate Reynolds numbers (Re≥250) the sliding-wall results show that the rib periodically sheds vortices of alternating circulation in much the same manner as the rib in a freestream; as in, for example, Davis and Moore [1982]. The vortices are distributed asymmetrically downstream of the rib and are not of equal strength as in the freestream case. However, the sliding-wall case shows no tendency to develop cycle-to-cycle variations at higher Reynolds numbers, as observed in the freestream and fixed-wall cases. Thus, while the moving wall causes the flow past the rib to become unsteady at a lower Reynolds number than in the fixed-wall case, it also acts to stabilize or “lock-in” the vortex-shedding frequency. This is attributed to the additional source of positive vorticity immediately downstream of the rib on the sliding wall.


2018 ◽  
Vol 858 ◽  
pp. 917-948 ◽  
Author(s):  
Darwin Darakananda ◽  
Jeff D. Eldredge

Inviscid vortex models have been demonstrated to capture the essential physics of massively separated flows past aerodynamic surfaces, but they become computationally expensive as coherent vortex structures are formed and the wake is developed. In this work, we present a two-dimensional vortex model in which vortex sheets represent shear layers that separate from sharp edges of the body and point vortices represent the rolled-up cores of these shear layers and the other coherent vortices in the wake. We develop a circulation transfer procedure that enables each vortex sheet to feed its circulation into a point vortex instead of rolling up. This procedure reduces the number of computational elements required to capture the dynamics of vortex formation while eliminating the spurious force that manifests when transferring circulation between vortex elements. By tuning the rate at which the vortex sheets are siphoned into the point vortices, we can adjust the balance between the model’s dimensionality and dynamical richness, enabling it to span the entire taxonomy of inviscid vortex models. This hybrid model can capture the development and subsequent shedding of the starting vortices with insignificant wall-clock time and remain sufficiently low-dimensional to simulate long-time-horizon events such as periodic bluff-body shedding. We demonstrate the viability of the method by modelling the impulsive translation of a wing at various fixed angles of attack, pitch-up manoeuvres that linearly increase the angle of attack from $0^{\circ }$ to $90^{\circ }$, and oscillatory pitching and heaving. We show that the proposed model correctly predicts the dynamics of large-scale vortical structures in the flow by comparing the distributions of vorticity and force responses from results of the proposed model with a model using only vortex sheets and, in some cases, high-fidelity viscous simulation.


2018 ◽  
Vol 35 (1) ◽  
pp. 1-14 ◽  
Author(s):  
L. M. Lin ◽  
S. Y. Shi ◽  
X. F. Zhong ◽  
Y. X. Wu
Keyword(s):  

2011 ◽  
Vol 16 (1) ◽  
pp. 233-247 ◽  
Author(s):  
Witold Stankiewicz ◽  
Robert Roszaka ◽  
Marek Morzyńskia

Low-dimensional models, allowing quick prediction of fluid behaviour, are key enablers of closed-loop flow control. Reduction of the model's dimension and inconsistency of high-fidelity data set and the reduced-order formulation lead to the decrease of accuracy. The quality of Reduced-Order Models might be improved by a calibration procedure. It leads to global optimization problem which consist in minimizing objective function like the prediction error of the model. In this paper, Reduced-Order Models of an incompressible flow around a bluff body are constructed, basing on Galerkin Projection of governing equations onto a space spanned by the most dominant eigenmodes of the Proper Orthogonal Decomposition (POD). Calibration of such models is done by adding to Galerkin System some linear and quadratic terms, which coefficients are estimated using Genetic Algorithm.


2012 ◽  
Vol 134 (9) ◽  
Author(s):  
M. B. Shyam Kumar ◽  
S. Vengadesan

The influence of rounded corners on the aerodynamic forces and flow interference has been studied in detail for a uniform flow past two side-by-side arranged square cylinders. The Reynolds number (Re) based on the cylinder diameter (D) and free stream velocity (U∞) is 100. Numerical simulations are carried out for seven different transverse gap ratios (T/D), each with a minimum and maximum corner radius. An inbuilt finite difference code with staggered arrangement of flow variables is used to discretize the governing equations. The concept of immersed boundary method (IBM) is employed to simulate flow around rounded corners using the regular Cartesian grids. The computational code was validated for flow past an isolated circular cylinder, square cylinder, and two equal sized circular cylinders and the results were found to be in very good agreement with available literatures. In the present study, results in terms of the mean and rms values of lift and drag coefficients, Strouhal number, phase diagrams, and contours of streamlines and vorticity are presented. As the corner radius is increased, a reduction in the drag force is observed. There exists a significant effect of gap ratio and corner radius on the phase angle of lift and drag coefficients. Three different flow patterns, namely the single bluff body flow, biased gapside flow, and two independent bluff body flows, were observed from this study.


Sign in / Sign up

Export Citation Format

Share Document