Vortex Shedding From a Bluff Body Adjacent to a Plane Sliding Wall

1991 ◽  
Vol 113 (3) ◽  
pp. 384-398 ◽  
Author(s):  
M. P. Arnal ◽  
D. J. Goering ◽  
J. A. C. Humphrey

The characteristics of the flow around a bluff body of square cross-section in contact with a solid-wall boundary are investigated numerically using a finite difference procedure. Previous studies (Taneda, 1965; Kamemoto et al., 1984) have shown qualitatively the strong influence of solid-wall boundaries on the vortex-shedding process and the formation of the vortex street downstream. In the present study three cases are investigated which correspond to flow past a square rib in a freestream, flow past a rib on a fixed wall and flow past a rib on a sliding wall. Values of the Reynolds number studied ranged from 100 to 2000, where the Reynolds number is based on the rib height, H, and bulk stream velocity, Ub. Comparisons between the sliding-wall and fixed-wall cases show that the sliding wall has a significant destabilizing effect on the recirculation region behind the rib. Results show the onset of unsteadiness at a lower Reynolds number for the sliding-wall case (50 ≤ Recrit ≤100) than for the fixed-wall case (Recrit≥100). A careful examination of the vortex-shedding process reveals similarities between the sliding-wall case and both the freestream and fixed-wall cases. At moderate Reynolds numbers (Re≥250) the sliding-wall results show that the rib periodically sheds vortices of alternating circulation in much the same manner as the rib in a freestream; as in, for example, Davis and Moore [1982]. The vortices are distributed asymmetrically downstream of the rib and are not of equal strength as in the freestream case. However, the sliding-wall case shows no tendency to develop cycle-to-cycle variations at higher Reynolds numbers, as observed in the freestream and fixed-wall cases. Thus, while the moving wall causes the flow past the rib to become unsteady at a lower Reynolds number than in the fixed-wall case, it also acts to stabilize or “lock-in” the vortex-shedding frequency. This is attributed to the additional source of positive vorticity immediately downstream of the rib on the sliding wall.

Author(s):  
Mohammad Javad Izadi ◽  
Pegah Asghari ◽  
Malihe Kamkar Delakeh

The study of flow around bluff bodies is important, and has many applications in industry. Up to now, a few numerical studies have been done in this field. In this research a turbulent unsteady flow round a cube is simulated numerically. The LES method is used to simulate the turbulent flow around the cube since this method is more accurate to model time-depended flows than other numerical methods. When the air as an ideal fluid flows over the cube, flow separate from the back of the body and unsteady vortices appears, causing a large wake behind the cube. The Near-Wake (wake close to the body) plays an important role in determining the steady and unsteady forces on the body. In this study, to see the effect of the free stream velocity on the surface pressure behind the body, the Reynolds number is varied from one to four million and the pressure on the back of the cube is calculated numerically. From the results of this study, it can be seen that as the velocity or the Reynolds number increased, the pressure on the surface behind the cube decreased, but the rate of this decrease, increased as the free stream flow velocity increased. For high free stream velocities the base pressure did not change as much and therefore the base drag coefficient stayed constant (around 1.0).


1997 ◽  
Vol 351 ◽  
pp. 167-199 ◽  
Author(s):  
S. BALACHANDAR ◽  
R. MITTAL ◽  
F. M. NAJJAR

The properties of the time- and span-averaged mean wake recirculation region are investigated in separated flows over several different two-dimensional bluff bodies. Ten different cases are considered and they divide into two groups: cylindrical geometries of circular, elliptic and square cross-sections and the normal plate. A wide Reynolds number range from 250 to 140000 is considered, but in all the cases the attached portion of the boundary layer remains laminar until separation. The lower Reynolds number data are from direct numerical simulations, while the data at the higher Reynolds number are obtained from large-eddy simulation and the experimental work of Cantwell & Coles (1983), Krothapalli (1996, personal communication), Leder (1991) and Lyn et al. (1995). Unlike supersonic and subsonic separations with a splitter plate in the wake, in all the cases considered here there is strong interaction between the shear layers resulting in Kármán vortex shedding. The impact of this fundamental difference on the distribution of Reynolds stress components and pressure in relation to the mean wake recirculation region (wake bubble) is considered. It is observed that in all cases the contribution from Reynolds normal stress to the force balance of the wake bubble is significant. In fact, in the cylinder geometries this contribution can outweigh the net force from the shear stress, so that the net pressure force tends to push the bubble away from the body. In contrast, in the case of normal plate, owing to the longer wake, the net contribution from shear stress outweighs that from the normal stress. At higher Reynolds numbers, separation of the Reynolds stress components into incoherent contributions provides more insight. The behaviour of the coherent contribution, arising from the dominant vortex shedding, is similar to that at lower Reynolds numbers. The incoherent contribution to Reynolds stress, arising from small-scale activity, is compared with that of a canonical free shear layer. Based on these observations a simple extension of the wake model (Sychev 1982; Roshko 1993a, b) is proposed.


2006 ◽  
Vol 129 (5) ◽  
pp. 517-523 ◽  
Author(s):  
Sintu Singha ◽  
K. P. Sinhamahapatra ◽  
S. K. Mukherjea

The two-dimensional incompressible laminar viscous flow of a conducting fluid past a square cylinder placed centrally in a channel subjected to an imposed transverse magnetic field has been simulated to study the effect of a magnetic field on vortex shedding from a bluff body at different Reynolds numbers varying from 50 to 250. The present staggered grid finite difference simulation shows that for a steady flow the separated zone behind the cylinder is reduced as the magnetic field strength is increased. For flows in the periodic vortex shedding and unsteady wake regime an imposed transverse magnetic field is found to have a considerable effect on the flow characteristics with marginal increase in Strouhal number and a marked drop in the unsteady lift amplitude indicating a reduction in the strength of the shed vortices. It has further been observed, that it is possible to completely eliminate the periodic vortex shedding at the higher Reynolds numbers and to establish a steady flow if a sufficiently strong magnetic field is imposed. The necessary strength of the magnetic field, however, depends on the flow Reynolds number and increases with the increase in Reynolds number. This paper describes the algorithm in detail and presents important results that show the effect of the magnetic field on the separated wake and on the periodic vortex shedding process.


1993 ◽  
Vol 246 ◽  
pp. 675-691 ◽  
Author(s):  
R. B. Green ◽  
J. H. Gerrard

The technique of the particle streak method has been applied to the study of bluff-body wakes at low Reynolds number. Vorticity and shear stress were measured to an accuracy of 15–20%. The vortex shedding cycles at Reynolds number of 73 and 226 are shown and the differences between the two are highlighted. Quantitative descriptions of the previously described vortex splitting phenomenon in the near wake are made, which leads to a description of the vortex shedding mechanism at low Reynolds number. The definition of low-Reynolds-number formation region length is examined. The strength of shed vortices obtained from integration of the vorticity is compared with directly measured vortex strengths and with the results of two-dimensional numerical analysis.


1995 ◽  
Vol 288 ◽  
pp. 265-310 ◽  
Author(s):  
T. Leweke ◽  
M. Provansal

Recent studies have demonstrated the strong influence of end effects on low-Reynoldsnumber bluff body wakes, and a number of questions remain concerning the intrinsic nature of three-dimensional phenomena in two-dimensional configurations. Some of them are answered by the present study which investigates the wake of bluff rings (i.e. bodies without ends) both experimentally and by application of the phenomenological Ginzburg–Landau model. The model turns out to be very accurate in describing qualitative and quantitative observations in a large Reynolds number interval. The experimental study of the periodic vortex shedding regime shows the existence of discrete shedding modes, in which the wake takes the form of parallel vortex rings or ‘oblique’ helical vortices, depending on initial conditions. The Strouhal number is found to decrease with growing body curvature, and a global expression for the Strouhal–Reynolds number relation, including curvature and shedding angle, is proposed, which is consistent with previous straight cylinder results. A secondary instability of the helical modes at low Reynolds numbers is discovered, and a detailed comparison with the Ginzburg–Landau model identifies it as the Eckhaus modulational instability of the spanwise structure of the near-wake formation region. It is independent of curvature and its clear observation in straight cylinder wakes is inhibited by end effects.The dynamical model is extended to higher Reynolds numbers by introducing variable parameters. In this way the instability of periodic vortex shedding which marks the beginning of the transition range is characterized as the Benjamin–Feir instability of the coupled oscillation of the near wake. It is independent of the shear layer transition to turbulence, which is known to occur at higher Reynolds numbers. The unusual shape of the Strouhal curve in this flow regime, including the discontinuity at the transition point, is qualitatively reproduced by the Ginzburg–Landau model. End effects in finite cylinder wakes are found to cause important changes in the transition behaviour also: they create a second Strouhal discontinuity, which is not observed in the present ring wake experiments.


2002 ◽  
Vol 466 ◽  
pp. 365-407 ◽  
Author(s):  
P. BAGCHI ◽  
S. BALACHANDAR

This study focuses on the effect of spatial non-uniformity in the ambient flow on the forces acting on a spherical particle at moderate particle Reynolds numbers. A scaling analysis is performed to obtain conditions under which such effects are important. A direct numerical simulation, based on spectral methods, is used to compute the three-dimensional time-dependent flow past a stationary sphere subject to a uniform flow plus a planar straining flow. The particle Reynolds number, Re, in the range 10 to 300 covering different flow regimes, from unseparated flow to unsteady vortex shedding, is considered. A variety of strain magnitudes and orientations are investigated. A systematic comparison with the potential flow results and axisymmetric strain results is given. Under elongational strain, both the planar and axisymmetric cases are found to stabilize the sphere wake and delay the onset of unsteadiness, while compressional strain leads to instability. In terms of separation angles, length of the recirculation eddy and topology of the surface streamlines, planar and axisymmetric strains yield nearly the same results. The drag force appears to have a linear relation with strain magnitude in both cases, as predicted by the potential flow. However, contrary to the potential flow results, the drag in planar strain is higher than that in axisymmetric strain. The generation of higher drag is explained using the surface pressure and vorticity distributions. Planar strain oriented at an angle with the oncoming uniform flow is observed to break the symmetry of the wake and results in a lift or side force. The variation of the drag and lift forces may be quite complex, and unlike the potential flow results they may not be monotonic with strain magnitude. The direction of the lift force may be opposite to that predicted by the inviscid and low Reynolds number (Re [Lt ] 1) theories. This behaviour is dictated by the presence or absence of a recirculation eddy. In the absence of a recirculation region at low Reynolds numbers (Re < 20), or at a very high strain magnitude when the recirculation region is suppressed, the results follow somewhat the pattern observed in potential flow. However, with the presence of a recirculation region, results opposite to those predicted by the potential theory are observed.


2001 ◽  
Vol 426 ◽  
pp. 263-295 ◽  
Author(s):  
RUPAD M. DAREKAR ◽  
SPENCER J. SHERWIN

Numerical investigations have been performed for the flow past square-section cylinders with a spanwise geometric deformation leading to a stagnation face with a sinusoidal waviness. The computations were performed using a spectral/hp element solver over a range of Reynolds numbers from 10 to 150.Starting from fully developed shedding past a straight cylinder at a Reynolds number of 100, a sufficiently high waviness is impulsively introduced resulting in the stabilization of the near wake to a time-independent state. It is shown that the spanwise waviness sets up a cross-flow within the growing boundary layer on the leading-edge surface thereby generating streamwise and vertical components of vorticity. These additional components of vorticity appear in regions close to the inflection points of the wavy stagnation face where the spanwise vorticity is weakened. This redistribution of vorticity leads to the breakdown of the unsteady and staggered Kármán vortex wake into a steady and symmetric near-wake structure. The steady nature of the near wake is associated with a reduction in total drag of about 16% at a Reynolds number of 100 compared with the straight, non-wavy cylinder.Further increases in the amplitude of the waviness lead to the emergence of hairpin vortices from the near-wake region. This wake topology has similarities to the wake of a sphere at low Reynolds numbers. The physical structure of the wake due to the variation of the amplitude of the waviness is identified with five distinct regimes. Furthermore, the introduction of a waviness at a wavelength close to the mode A wavelength and the primary wavelength of the straight square-section cylinder leads to the suppression of the Kármán street at a minimal waviness amplitude.


Author(s):  
Barton L. Smith ◽  
Jack J. Stepan ◽  
Donald M. McEligot

The results of flow experiments performed in a cylinder array designed to mimic a VHTR Nuclear Plant lower plenum design are presented. Pressure drop and velocity field measurements were made. Based on these measurements, five regimes of behavior are identified that are found to depend on Reynolds number. It is found that the recirculation region behind the cylinders is shorter than that of half cylinders placed on the wall representing the symmetry plane. Unlike a single cylinder, the separation point is found to always be on the rear of the cylinders, even at very low Reynolds number. Boundary layer transition is found to occur at much lower Reynolds numbers than previously reported.


2020 ◽  
Vol 23 (12) ◽  
pp. 2679-2693 ◽  
Author(s):  
Huan Li ◽  
Xuhui He ◽  
Hanfeng Wang ◽  
Si Peng ◽  
Shuwei Zhou ◽  
...  

Experiments on the aerodynamics of a two-dimensional bluff body simplified from a China high-speed train in crosswinds were carried out in a wind tunnel. Effects of wind angle of attack α varying in [−20°, 20°] were investigated at a moderate Reynolds number Re = 9.35 × 104 (based on the height of the model). Four typical behaviors of aerodynamics were identified. These behaviors are attributed to the flow structure around the upper and lower halves of the model changing from full to intermittent reattachment, and to full separation with a variation in α. An alternate transition phenomenon, characterized by an alteration between large- and small-amplitude aerodynamic fluctuations, was detected. The frequency of this alteration is about 1/10 of the predominant vortex shedding. In the intervals of the large-amplitude behavior, aerodynamic forces fluctuate periodically with a strong span-wise coherence, which are caused by the anti-symmetric vortex shedding along the stream-wise direction. On the contrary, the aerodynamic forces fluctuating at small amplitudes correspond to a weak span-wise coherence, which are ascribed to the symmetric vortex shedding from the upper and lower halves of the model. Generally, the mean amplitude of the large-amplitude mode is 3 times larger than that of the small one. Finally, the effects of Reynolds number were examined within Re = [9.35 × 104, 2.49 × 105]. Strong Reynolds number dependence was observed on the model with two rounded upper corners.


Sign in / Sign up

Export Citation Format

Share Document