Recordings of sonic muscle activity of the Lusitanian toadfish Halobatrachus didactylus during sound production.

2009 ◽  
Vol 125 (4) ◽  
pp. 2486-2486
Author(s):  
Joana M. Jordão ◽  
Maria Clara Amorim ◽  
Paulo Fonseca
1994 ◽  
Vol 72 (3) ◽  
pp. 1337-1356 ◽  
Author(s):  
S. P. Zhang ◽  
P. J. Davis ◽  
R. Bandler ◽  
P. Carrive

1. The contribution of the midbrain periaqueductal gray (PAG) to the central regulation of vocalization was investigated by analyzing the electromyographic (EMG) changes in respiratory, laryngeal, and oral muscles evoked by microinjection of D,L-homocysteic acid (DLH) in the PAG of unanesthetized, precollicular decerebrate cats. Moderate to large (6-40 nmol) doses of DLH evoked natural-sounding vocalization as well as increases in inspiratory depth and respiratory rate. 2. Two basic types of vocalization were evoked, each associated with a distinct and characteristic pattern of respiratory, laryngeal and oral EMG changes. Type A vocalization (voiced sounds such as howl/mew/growl) was characterized by excitation of the cricothyroid (CT) and thyro-arytenoid (TA) muscles, and inhibition of the posterior crico-arytenoid (PCA) muscle, whereas type B vocalization (unvoiced hiss sounds) was characterized by excitation of the PCA and TA muscles and no significant activation of the CT muscle. In addition, stronger expiratory (external oblique, internal oblique, internal intercostal) EMG increases were associated with type A responses, and larger increases in genioglossus and digastric muscle activity were associated with type B responses. 3. Microinjections of small doses of DLH (300 pmol-3 nmol), also evoked patterned changes in muscle activity (usually without audible vocalization) that, although of lower amplitude, were identical to those evoked by injections of moderate to large DLH doses. In no such experiments (175 sites) were individual muscles activated by small dose injections of DLH into the PAG. Further, type A vocalization/muscle patterns were evoked from PAG sites caudal to those at which type B vocalization/muscle patterns were evoked. 4. Considered together these results indicate: that the PAG contains topographically separable groups of neurons that coordinate laryngeal, respiratory, and oral muscle patterns characteristic of two fundamental types of vocalization and that the underlying PAG organization takes the form of a representation of muscle patterns, rather than individual muscles. 5. The patterns of EMG activity evoked by excitation of PAG neurons were strikingly similar to previously reported patterns of EMG activity characteristic of major phonatory categories in higher species, including humans (e.g., vowel phonation, voiceless consonant phonation). These findings raise the possibility that the sound production circuitry of the PAG could well be utilized by cortical and subcortical "language structures" to coordinate basic respiratory and laryngeal motor patterns that are necessary for speech.


1993 ◽  
Vol 71 (11) ◽  
pp. 2262-2274 ◽  
Author(s):  
Michael L. Fine ◽  
Barbara Bernard ◽  
Thomas M. Harris

Sexually dimorphic sonic muscles, which vibrate the swimbladder for sound production in the oyster toadfish (Opsanus tau), are among the fastest vertebrate muscles. Previous work has shown that sonic muscle fibers are smaller in males, have an unusual morphology, and increase in number and size for life. We now report evidence consistent with the hypothesis that mature, presumably postmitotic, sonic fibers divide, and suggest that division, which returns fibers to small energy-efficient units, is necessary because mitochondria are excluded from the fiber's contractile cylinder. Large fibers, potential candidates for division, develop fragments of contractile cylinder separated by channels of an expanded sarcoplasmic reticulum; these channels can assume the appearance of the sarcoplasm (glycogen granules and mitochondria) beneath the sarcolemma. Measurements indicate that contractile cylinder diameter does not increase with fish size and that diameters are approximately 21% larger in females (p < 0.0001). Fiber fragmentation, possible division, and the presence of smaller fibers with smaller diameter contractile cylinders in males are seen as adaptations for repeated rapid contraction and fatigue resistance during production of the male's courtship boatwhistle call.


2014 ◽  
Vol 281 (1791) ◽  
pp. 20141197 ◽  
Author(s):  
Kelly S. Boyle ◽  
Orphal Colleye ◽  
Eric Parmentier

Elucidating the origins of complex biological structures has been one of the major challenges of evolutionary studies. Within vertebrates, the capacity to produce regular coordinated electric organ discharges (EODs) has evolved independently in different fish lineages. Intermediate stages, however, are not known. We show that, within a single catfish genus, some species are able to produce sounds, electric discharges or both signals (though not simultaneously). We highlight that both acoustic and electric communication result from actions of the same muscle. In parallel to their abilities, the studied species show different degrees of myofibril development in the sonic and electric muscle. The lowest myofibril density was observed in Synodontis nigriventris , which produced EODs but no swim bladder sounds, whereas the greatest myofibril density was observed in Synodontis grandiops , the species that produced the longest sound trains but did not emit EODs. Additionally, S. grandiops exhibited the lowest auditory thresholds. Swim bladder sounds were similar among species, while EODs were distinctive at the species level. We hypothesize that communication with conspecifics favoured the development of species-specific EOD signals and suggest an evolutionary explanation for the transition from a fast sonic muscle to electrocytes.


2002 ◽  
Vol 205 (16) ◽  
pp. 2375-2385 ◽  
Author(s):  
Sheila N. Patek

SUMMARY The origin of arthropod sound-producing morphology typically involves modification of two translating body surfaces, such as the legs and thorax. In an unusual structural rearrangement, I show that one lineage of palinurid lobsters lost an antennal joint articulation, which transformed this joint from moving with one degree of freedom into a sliding joint with multiple degrees of freedom. With this sliding joint, `stick-and-slip' sounds are produced by rubbing the base of each antenna against the antennular plate. To understand the musculo-skeletal changes that occurred during the origin and evolutionary variation of this sound-producing mechanism, I examined joint morphology and antennal muscle anatomy across sound-producing and non-sound-producing palinurids. Plectrum movement and antennal muscle activity were measured in a sound-producing species, Panulirus argus. The promotor muscle pulls the plectrum over the file during sound-producing and non-sound-producing movements; a higher intensity of muscle activity is associated with sound production. The promotor muscle is larger and attaches more medially in sound-producing palinurids than in non-sound producers. In Panulirus argus, each shingle on the file has an additional ridge; in Palinurus elephas, the shingle surfaces are smooth. These differences in shingle surface features suggest variation in the stick-and-slip properties of the system. Translational motion permitted by the sliding joint is necessary for sound production; hence, the construction of a sliding joint is a key modification in the origin of this sound-producing mechanism.


1997 ◽  
Vol 200 (18) ◽  
pp. 2449-2457 ◽  
Author(s):  
M A Connaughton ◽  
M L Fine ◽  
M H Taylor

Male weakfish Cynoscion regalis possess highly specialized, bilateral, striated sonic muscles used in sound production associated with courtship. Androgen-driven hypertrophy of the muscles during the late spring spawning period results in a tripling of sonic muscle mass followed by post-spawning atrophy. This study examined the morphological and biochemical changes underlying seasonal changes in sonic muscle mass and the functional effects of these on contraction as measured by sound production. Sonic muscle fiber cross-sectional area (CSA) increased significantly during the period of hypertrophy and then decreased by nearly 60%. Both the CSA of the contractile cylinder and that of the peripheral sarcoplasm decreased significantly by late summer, with the peripheral ring of sarcoplasm virtually disappearing. Muscle protein content followed a similar trend, suggesting a major loss of structural elements during atrophy. Muscle glycogen and lipid content decreased precipitously in early June during the period of maximal sound production. Sound pressure level increased and sound pulse duration decreased with increasing sonic muscle mass, indicating that sonic muscle fibers contract with greater force and shorter duration during the spawning season. Neither the pulse repetition rate nor the number of pulses varied seasonally or with muscle mass, suggesting that the effects of steroids on the acoustic variables are more pronounced peripherally than in the central nervous system. Seasonal sonic muscle hypertrophy, therefore, functions as a secondary sexual characteristic that maximizes vocalization amplitude during the spawning period.


Sign in / Sign up

Export Citation Format

Share Document