Mode coupling induced by random ocean sound speed structure: Mean intensity and revisiting the evolution equations for the cross‐mode coherences.

2008 ◽  
Vol 124 (4) ◽  
pp. 2598-2598
Author(s):  
John Colosi ◽  
Andrey Morozov
2012 ◽  
Vol 20 ◽  
pp. 168-176
Author(s):  
LEONARD GAMBERG

We consider the cross section for semi-inclusive deep inelastic scattering in Fourier space, conjugate to the outgoing hadron's transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation functions become simple products. Individual asymmetric terms in the cross section can be projected out by means of a generalized set of weights involving Bessel functions. Advantages of employing these Bessel weights are that they suppress (divergent) contributions from high transverse momentum and that soft factors cancel in (Bessel-) weighted asymmetries. Also, the resulting compact expressions immediately connect to previous work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions and to quantities accessible in lattice QCD. Bessel-weighted asymmetries are thus model independent observables that augment the description and our understanding of correlations of spin and momentum in nucleon structure.


2015 ◽  
Vol 138 (3) ◽  
pp. 1743-1743
Author(s):  
Dominic DiMaggio ◽  
Annalise Pearson ◽  
John A. Colosi

1988 ◽  
Vol 186 ◽  
pp. 119-127 ◽  
Author(s):  
John Miles

Luke's (1967) variational formulation for surface waves is extended to incorporate the motion of a wavemaker and applied to the cross-wave problem. Whitham's average-Lagrangian method then is invoked to obtain the evolution equations for the slowly varying complex amplitude of the parametrically excited cross-wave that is associated with symmetric excitation of standing waves in a rectangular tank of width π/k, length l and depth d for which kl = O(1) and kd [Gt ] 1. These evolution equations are Hamiltonian and isomorphic to those for parametric excitation of surface waves in a cylinder that is subjected to a vertical oscillation, for which phase-plane trajectories, stability criteria and the effects of damping are known (Miles 1984a). The formulation and results differ from those of Garrett (1970) in consequence of his linearization of the boundary condition at the wavemaker and his neglect of self-interaction of the cross-waves in the free-surface conditions (although Garrett does incorporate self-interaction in his calculation of the equilibrium amplitude of the cross-waves). These differences have only a small effect on the criterion for the stability of plane waves, but the self-interaction is crucial for the determination of the stability of the cross-waves.


Naturally generated ambient noise in the ocean is created by breaking waves, spray and precipitation. Each of these mechanisms produces a pulse of sound that propagates down into the depths of the ocean, and the superposition of all such pulses from across the whole sea surface constitutes the ambient noise field. Since the noise is a stochastic phenomenon, its properties are described in terms of statistical quantities, the most useful being the power spectral density at a point and the cross-spectral density between two points in the field. If these second-order statistical measures are independent of absolute position, the noise field is said to be spatially homogeneous. In the rare case of an isovelocity, deep ocean, the noise field at depths greater than a wavelength or so beneath the surface is spatially homogeneous, consisting of a random superposition of plane waves. A non-uniform sound speed profile, however, introduces wave-front curvature which modifies the situation significantly. the noise exhibits strong spatial homogeneity over length scales that are comparable with the apertures of typical acoustic arrays. Apart from the implications with regard to array performance, this is important in connection with certain aspects of acoustical oceanography, whereby information on the oceanographic environment is extracted from the noise field (Buckingham et al. 1992). Such information is accessible only if the structure of the noise field is well understood. The problem lies in determining the spatial and spectral properties of the noise in a profile. Fundamental to the noise analysis is the Green’s function for the channel, which characterizes the propagation conditions; and yet for most non-uniform sound speed profiles the analysis of the Green's function is intractable. However, there is one profile, designated the inverse-square profile, for which a complete, exact solution for the field has been developed (Buckingham 1991). The inverse-square profile is monotonic increasing with depth, giving rise to upward refractive propagation. Such a profile is found in several ocean environments: the polar oceans, where the temperature and hence the sound speed show a minimum at the surface; the mixed surface layer, extending to a depth of order 100 m in the open ocean; and the ocean-surface bubble layer, occupying the first ten metres or so beneath the surface. An analysis of the noise field in the presence of an inverse square profile, based on the solution for the Green’s function, shows that the cross-spectral density of the noise in the vertical consists of three components: a normal mode sum, representing noise originating largely in distant sources; a direct path contribution, from sources that are more or less overhead; and a near-surface term that is negligible at depths greater than a wavelength. In the theoretical noise spectrum , the normal mode and direct path components are prominent, dominating, respectively, at low and high frequencies. The cross-over frequency depends on the parameters of the profile and attenuation in the medium, but for polar oceans is in the region of several hundred hertz. At a much lower frequency, around 10 Hz, where the polar profile ceases to support normal mode propagation, a minimum appears in the theoretical spectrum . This is the result of a very rapid fall off in the normal mode component of the noise and a slow rise of the direct path component with decreasing frequency. Each of the three components of the vertical cross-spectral density exhibits strong spatial inhomogeneity. This is exemplified by the dramatic dependence of the cross-spectrum on both the mean depth of the sensors and frequency. Although such behaviour adds complexity to the structure of the noise field, this could be advantageous since it allows the possibility of performing inversions on noise cross-spectral data to determine properties of the medium. Recent measurements of low-frequency (50-2000 Hz) and very low-frequency (5-200 Hz) ambient noise spectra in the marginal ice zone of the Greenland Sea, where the sound speed profile is of the inverse-square form, have been compared with the predictions of the new noise theory. There is evidence in the measured spectra that both the normal mode and direct path components of the noise are present with the predicted relative levels. A minimum around 10 Hz is a ubiquitous feature of the VLF spectra, and the LF spectra show a change of slope close to 400 Hz, both of which are in accord with the theory. Along the ice edge a highly non-uniform (spatial) distribution of energetic sources is known to be present, whose effects in the observed spectra are consistent with arguments developed from the inverse-square noise analysis.


2020 ◽  
Vol 8 ◽  
Author(s):  
Shun-ichi Watanabe ◽  
Tadashi Ishikawa ◽  
Yusuke Yokota ◽  
Yuto Nakamura

Global Navigation Satellite System–Acoustic ranging combined seafloor geodetic technique (GNSS-A) has extended the geodetic observation network into the ocean. The key issue for analyzing the GNSS-A data is how to correct the effect of sound speed variation in the seawater. We constructed a generalized observation equation and developed a method to directly extract the gradient sound speed structure by introducing appropriate statistical properties in the observation equation, especially the data correlation term. In the proposed scheme, we calculate the posterior probability based on the empirical Bayes approach using the Akaike’s Bayesian Information Criterion for model selection. This approach enabled us to suppress the overfitting of sound speed variables and thus to extract simpler sound speed field and stable seafloor positions from the GNSS-A dataset. The proposed procedure is implemented in the Python-based software “GARPOS” (GNSS-Acoustic Ranging combined POsitioning Solver).


2015 ◽  
Vol 137 (4) ◽  
pp. 2241-2241 ◽  
Author(s):  
Shinpei Gotoh ◽  
Toshio Tsuchiya ◽  
Yoshihisa Hiyoshi ◽  
Koichi Mizutani

Sign in / Sign up

Export Citation Format

Share Document