scholarly journals A thermodynamically admissible reptation model for fast flows of entangled polymers

1999 ◽  
Vol 43 (6) ◽  
pp. 1461-1493 ◽  
Author(s):  
Hans Christian Öttinger
Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 876 ◽  
Author(s):  
Argyrios Karatrantos ◽  
Russell J. Composto ◽  
Karen I. Winey ◽  
Martin Kröger ◽  
Nigel Clarke

This review concerns modeling studies of the fundamental problem of entangled (reptational) homopolymer diffusion in melts and nanocomposite materials in comparison to experiments. In polymer melts, the developed united atom and multibead spring models predict an exponent of the molecular weight dependence to the polymer diffusion very similar to experiments and the tube reptation model. There are rather unexplored parameters that can influence polymer diffusion such as polymer semiflexibility or polydispersity, leading to a different exponent. Models with soft potentials or slip-springs can estimate accurately the tube model predictions in polymer melts enabling us to reach larger length scales and simulate well entangled polymers. However, in polymer nanocomposites, reptational polymer diffusion is more complicated due to nanoparticle fillers size, loading, geometry and polymer-nanoparticle interactions.


2016 ◽  
Vol 49 (8) ◽  
pp. 3161-3173 ◽  
Author(s):  
Pavlos S. Stephanou ◽  
Ioanna Ch. Tsimouri ◽  
Vlasis G. Mavrantzas

Author(s):  
Rodrigo E. Teixeira ◽  
Richard S. Graham

The visco-elastic properties of entangled polymer liquids arise from molecular-scale topological interactions and stochastic fluctuations under flow. Here, the evolutions of individual entangled polymers were observed in rheologically relevant shear flow histories. We uncover a high degree of molecular individualism and broad conformational distributions resulting from incessant stretch-collapse cycles. The data and insights of the present study may lead to improved molecular-level models and constitutive equations. These tools, in turn, may enable the rational design of novel materials with properties tailored to accomplish specific tasks such as high-pressure vessels and piping with greater safety margins and cost-effectiveness.


2000 ◽  
Vol 14 (32) ◽  
pp. 3881-3895 ◽  
Author(s):  
FRANCO FERRARI ◽  
HAGEN KLEINERT ◽  
IGNAZIO LAZZIZZERA

We formulate a field theory capable of describing a canonical ensemble of N polymers subjected to linking number constraints in terms of Feynman diagrams.


1999 ◽  
Vol 43 (2) ◽  
pp. 453-460 ◽  
Author(s):  
Shi-Qing Wang ◽  
N. Plucktaveesak

2018 ◽  
Vol 121 (5) ◽  
Author(s):  
Brandon L. Peters ◽  
K. Michael Salerno ◽  
Ting Ge ◽  
Dvora Perahia ◽  
Gary S. Grest

Sign in / Sign up

Export Citation Format

Share Document