polymer liquids
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 13)

H-INDEX

39
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Manfred H. Wagner ◽  
Esmaeil Narimissa ◽  
Leslie Poh ◽  
Taisir Shahid

AbstractElongational viscosity data of well-characterized solutions of 3–50% weight fraction of monodisperse polystyrene PS-820k (molar mass of 820,000 g/mol) dissolved in oligomeric styrene OS8.8 (molar mass of 8800 g/mol) as reported by André et al. (Macromolecules 54:2797–2810, 2021) are analyzed by the Extended Interchain Pressure (EIP) model including the effects of finite chain extensibility. Excellent agreement between experimental data and model predictions is obtained, based exclusively on the linear-viscoelastic characterization of the polymer solutions. The data were obtained by a filament stretching rheometer, and at high strain rates and lower polymer concentrations, the stretched filaments fail by rupture before reaching the steady-state elongational viscosity. Filament rupture is predicted by a criterion for brittle fracture of entangled polymer liquids, which assumes that fracture is caused by scission of primary C-C bonds of polymer chains when the strain energy reaches the bond-dissociation energy of the covalent bond (Wagner et al., J. Rheology 65:311–324, 2021).


2021 ◽  
Author(s):  
Gleb O. Rudakov ◽  
Aleksandr A. Laas ◽  
Mariya A. Makarova ◽  
Anzhela S. Malygina ◽  
Grigoriy V. Pyshnograi

Macromol ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 2-17
Author(s):  
Louis Poon ◽  
Jacob R. Hum ◽  
Richard G. Weiss

A diverse range of linear polysiloxane-based ionic polymers that are hydrophobic and highly flexible can be obtained by substituting the polymers with varying amounts of ionic centers. The materials can be highly crystalline solids, amorphous soft solids, poly(ionic) liquids or viscous polymer liquids. A key to understanding how structural variations can lead to these different materials is the establishment of correlations between the physical (dynamic and static) properties and the structures of the polymers at different distance scales. This short review provides such correlations by examining the influence of structural properties (such as molecular weights, ion pair contents, and ion types) on key bulk properties of the materials.


Physics ◽  
2020 ◽  
Vol 13 ◽  
Author(s):  
Anonymous
Keyword(s):  

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 263 ◽  
Author(s):  
Lijuan Qian ◽  
Hongchuan Cong ◽  
Chenlin Zhu

Binary droplet collisions are a key mechanism in powder coatings production, as well as in spray combustion, ink-jet printing, and other spray processes. The collision behavior of the droplets using Newtonian and polymer liquids is studied numerically by the coupled level-set and volume of fluid (CLSVOF) method and adaptive mesh refinement (AMR). The deformation process, the internal flow fields, and the energy evolution of the droplets are discussed in detail. For binary polymer droplet collisions, compared with the Newtonian liquid, the maximum deformation is promoted. Due to the increased viscous dissipation, the colliding droplets coalesce more slowly. The stagnant flow region in the velocity field increases and the flow re-direction phenomenon is suppressed, so the polymer droplets coalesce permanently. As the surface tension of the polymer droplets decreases, the kinetic and the dissipated energy increases. The maximum deformation is promoted, and the coalescence speed of the droplets slows down. During the collision process, the dominant pressure inside the polymer droplets varies from positive pressure to negative pressure and then to positive pressure. At low surface tension, due to the non-synchronization in the movement of the interface front, the pressure is not smooth and distributes asymmetrically near the center of the droplets.


2020 ◽  
Vol 10 (2) ◽  
pp. 428 ◽  
Author(s):  
Chunyu Chen ◽  
Huidan Zeng ◽  
Yifan Deng ◽  
Jingtao Yan ◽  
Yejia Jiang ◽  
...  

Many models have been created and attempted to describe the temperature-dependent viscosity of glass-forming liquids, which is the foundational feature to lay out the mechanism of obtaining desired glass properties. Most viscosity models were generated along with several impact factors. The complex compositions of commercial glasses raise challenges to settle these parameters. Usually, this issue will lead to unsatisfactory predicted results when fitted to a real viscosity profile. In fact, the introduction of the reliable viscosity-temperature data to viscosity equations is an effective approach to obtain the accurate parameters. In this paper, the Eyring viscosity equation, which is widely adopted for molecular and polymer liquids, was applied in this case to calculate the viscosity of glass materials. On the basis of the linear variation of molar volume with temperature during glass cooling, a modified temperature-dependent Eyring viscosity equation was derived with a distinguished mathematical expression. By means of combining high-temperature viscosity data and the glass transition temperature (Tg), nonlinear regression analysis was employed to obtain the accurate parameters of the equation. In addition, we have demonstrated that the different regression methods exert a great effect on the final prediction results. The viscosity of a series of glasses across a wide temperature range was accurately predicted via the optimal regression method, which was further used to verify the reliability of the modified Eyring equation.


Sign in / Sign up

Export Citation Format

Share Document