Managing the Training Load in Adolescent Athletes

2017 ◽  
Vol 12 (s2) ◽  
pp. S2-42-S2-49 ◽  
Author(s):  
Andrew Murray

While historically adolescents were removed from their parents to prepare to become warriors, this process repeats itself in modern times but with the outcome being athletic performance. This review considers the process of developing athletes and managing load against the backdrop of differing approaches of conserving and maximizing the talent available. It acknowledges the typical training “dose” that adolescent athletes receive across a number of sports and the typical “response” when it is excessive or not managed appropriately. It also examines the best approaches to quantifying load and injury risk, acknowledging the relative strengths and weaknesses of subjective and objective approaches. Making evidence-based decisions is emphasized, while the appropriate monitoring techniques are determined by both the sporting context and individual situation. Ultimately a systematic approach to training-load monitoring is recommended for adolescent athletes to both maximize their athletic development and allow an opportunity for learning, reflection, and enhancement of performance knowledge of coaches and practitioners.

Author(s):  
Stephen W. West ◽  
Sean Williams ◽  
Dario Cazzola ◽  
Simon Kemp ◽  
Matthew J. Cross ◽  
...  

AbstractTraining load monitoring has grown in recent years with the acute:chronic workload ratio (ACWR) widely used to aggregate data to inform decision-making on injury risk. Several methods have been described to calculate the ACWR and numerous methodological issues have been raised. Therefore, this study examined the relationship between the ACWR and injury in a sample of 696 players from 13 professional rugby clubs over two seasons for 1718 injuries of all types and a further analysis of 383 soft tissue injuries specifically. Of the 192 comparisons undertaken for both injury groups, 40% (all injury) and 31% (soft tissue injury) were significant. Furthermore, there appeared to be no calculation method that consistently demonstrated a relationship with injury. Some calculation methods supported previous work for a “sweet spot” in injury risk, while a substantial number of methods displayed no such relationship. This study is the largest to date to have investigated the relationship between the ACWR and injury risk and demonstrates that there appears to be no consistent association between the two. This suggests that alternative methods of training load aggregation may provide more useful information, but these should be considered in the wider context of other established risk factors.


2020 ◽  
Vol 55 (9) ◽  
pp. 885-892
Author(s):  
Franco M. Impellizzeri ◽  
Paolo Menaspà ◽  
Aaron J. Coutts ◽  
Judd Kalkhoven ◽  
Miranda J Menaspà

The purpose of this 2-part commentary series is† to explain why we believe our ability to control injury risk by manipulating training load (TL) in its current state is an illusion and why the foundations of this illusion are weak and unreliable. In part 1, we introduce the training process framework and contextualize the role of TL monitoring in the injury-prevention paradigm. In part 2, we describe the conceptual and methodologic pitfalls of previous authors who associated TL and injury in ways that limited their suitability for the derivation of practical recommendations. The first important step in the training process is developing the training program: the practitioner develops a strategy based on available evidence, professional knowledge, and experience. For decades, exercise strategies have been based on the fundamental training principles of overload and progression. Training-load monitoring allows the practitioner to determine whether athletes have completed training as planned and how they have coped with the physical stress. Training load and its associated metrics cannot provide a quantitative indication of whether particular load progressions will increase or decrease the injury risk, given the nature of previous studies (descriptive and at best predictive) and their methodologic weaknesses. The overreliance on TL has moved the attention away from the multifactorial nature of injury and the roles of other important contextual factors. We argue that no evidence supports the quantitative use of TL data to manipulate future training with the purpose of preventing injury. Therefore, determining “how much is too much” and how to properly manipulate and progress TL are currently subjective decisions based on generic training principles and our experience of adjusting training according to an individual athlete's response. Our message to practitioners is to stop seeking overly simplistic solutions to complex problems and instead embrace the risks and uncertainty inherent in the training process and injury prevention.


Author(s):  
Stephen W. West ◽  
Jo Clubb ◽  
Lorena Torres-Ronda ◽  
Daniel Howells ◽  
Edward Leng ◽  
...  

AbstractTraining load monitoring is a core aspect of modern-day sport science practice. Collecting, cleaning, analysing, interpreting, and disseminating load data is usually undertaken with a view to improve player performance and/or manage injury risk. To target these outcomes, practitioners attempt to optimise load at different stages throughout the training process, like adjusting individual sessions, planning day-to-day, periodising the season, and managing athletes with a long-term view. With greater investment in training load monitoring comes greater expectations, as stakeholders count on practitioners to transform data into informed, meaningful decisions. In this editorial we highlight how training load monitoring has many potential applications and cannot be simply reduced to one metric and/or calculation. With experience across a variety of sporting backgrounds, this editorial details the challenges and contextual factors that must be considered when interpreting such data. It further demonstrates the need for those working with athletes to develop strong communication channels with all stakeholders in the decision-making process. Importantly, this editorial highlights the complexity associated with using training load for managing injury risk and explores the potential for framing training load with a performance and training progression mindset.


Author(s):  
Jamie Salter ◽  
Mark B.A. De Ste Croix ◽  
Jonathan D. Hughes ◽  
Matthew Weston ◽  
Christopher Towlson

Purpose: Overuse injury risk increases during periods of accelerated growth, which can subsequently impact development in academy soccer, suggesting a need to quantify training exposure. Nonprescriptive development scheme legislation could lead to inconsistent approaches to monitoring maturity and training load. Therefore, this study aimed to communicate current practices of UK soccer academies toward biological maturity and training load. Methods: Forty-nine respondents completed an online survey representing support staff from male Premier League academies (n = 38) and female Regional Talent Clubs (n = 11). The survey included 16 questions covering maturity and training-load monitoring. Questions were multiple-choice or unipolar scaled (agreement 0–100) with a magnitude-based decision approach used for interpretation. Results: Injury prevention was deemed highest importance for maturity (83.0 [5.3], mean [SD]) and training-load monitoring (80.0 [2.8]). There were large differences in methods adopted for maturity estimation and moderate differences for training-load monitoring between academies. Predictions of maturity were deemed comparatively low in importance for bio-banded (biological classification) training (61.0 [3.3]) and low for bio-banded competition (56.0 [1.8]) across academies. Few respondents reported maturity (42%) and training load (16%) to parent/guardians, and only 9% of medical staff were routinely provided this data. Conclusions: Although consistencies between academies exist, disparities in monitoring approaches are likely reflective of environment-specific resource and logistical constraints. Designating consistent and qualified responsibility to staff will help promote fidelity, feedback, and transparency to advise stakeholders of maturity–load relationships. Practitioners should consider biological categorization to manage load prescription to promote maturity-appropriate dose–responses and to help reduce the risk of noncontact injury.


2013 ◽  
Author(s):  
Bryan T. Karazsia ◽  
Keri J. Brown Kirschman

2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0017
Author(s):  
Sophia M. Ulman ◽  
Laura Saleem ◽  
Kirsten Tulchin-Francis

Background: The Functional Movement Screen (FMS) is a tool designed to establish a baseline for fundamental movement capacity, highlight limitations and limb asymmetries, and identify potential injury risk. Previous research has shown that individual components of the screen are also indicative of injury risk, as well as potential predictors of athletic performance unlike the FMS composite scores. However, this literature is limited and lacks statistical power. Identifying which component scores are predictive of injury risk and athletic performance would provide a quick, powerful tool for coaches and trainers to evaluate athletes. Purpose: To determine if individual component scores of the FMS are associated with athletic performance in highly-active youth athletes. Methods: Youth athletes participated in the Specialized Athlete Functional Evaluation (SAFE) Program. Data collection was extensive, however, for the purpose of this abstract, only a selection of data was analyzed – age, BMI, years played, total number of past injuries, isokinetic knee strength, 10- and 20-meter sprint, single-leg hop (SLH) distance, and FMS scores. Seated knee flexion/extension strength was collected at 120°/second using a Biodex System 4, and peak torque was normalized by body weight. The maximum distance of three SLHs was recorded for each leg and normalized to leg length. FMS scores used for analysis included the total composite and component scores, including the deep squat, hurdle step, in-line lunge, shoulder mobility, active straight-leg raise, trunk stability push-up, and rotary stability. Wilcoxon Signed Ranks Tests were used to determine side-to-side differences, and Kruskal-Wallis tests were performed to determine differences in athletic performance based on FMS scores ( α<0.05). Results: A total of 38 highly-active, youth athletes (26F; 15.4±2.6 years; BMI 21.0±5.3) were tested. Participants reported playing organized sports for 8.7±3.4 years, having 2.0±1.2 past sports-related injuries, and 74% reported specializing in a single sport. No side-to-side differences were found. While the composite FMS score significantly differed by number of past injuries ( p=0.036), it was not associated with athletic performance. Alternatively, left knee strength, sprint speeds, and right hop distance significantly differed by the hurdle step component score (Table 1). Conclusion: While the composite FMS score was not an indicator of athletic performance, the hurdle step component score was associated with strength, speed, and jump performance. This individual task could be a beneficial tool for coaches and trainers when evaluating athletic ability and injury risk of athletes. Tables/Figures: [Table: see text]


Sports ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 109
Author(s):  
Tom Douchet ◽  
Allex Humbertclaude ◽  
Carole Cometti ◽  
Christos Paizis ◽  
Nicolas Babault

Accelerations (ACC) and decelerations (DEC) are important and frequent actions in soccer. We aimed to investigate whether ACC and DEC were good indicators of the variation of training loads in elite women soccer players. Changes in the training load were monitored during two different selected weeks (considered a “low week” and a “heavy week”) during the in-season. Twelve elite soccer women playing in the French first division wore a 10-Hz Global Positioning System unit recording total distance, distance within speed ranges, sprint number, ACC, DEC, and a heart rate monitor during six soccer training sessions and rated their perceived exertion (RPE). They answered the Hooper questionnaire (sleep, stress, fatigue, DOMS) to get an insight of their subjective fitness level at the start (Hooper S) and at the end of each week (Hooper E). A countermovement jump (CMJ) was also performed once a week. During the heavy week, the training load was significantly greater than the low week when considering number of ACC >2 m·s−2 (28.2 ± 11.9 vs. 56.1 ± 10.1, p < 0.001) and number of DEC < −2 m·s−2 (31.5 ± 13.4 vs. 60.9 ± 14.4, p < 0.001). The mean heart rate percentage (HR%) (p < 0.05), RPE (p < 0.001), and Hooper E (p < 0.001) were significantly greater during the heavy week. ACC and DEC showed significant correlations with most outcomes: HR%, total distance, distance per min, sprint number, Hooper index of Hooper E, DOMS E, Fatigue E, RPE, and session RPE. We concluded that, for elite women soccer players, quantifying ACC and DEC alongside other indicators seemed to be essential for a more complete training load monitoring. Indeed, it could lead to a better understanding of the reasons why athletes get fatigued and give insight into neuromuscular, rather than only energetic, fatigue.


Neurology ◽  
2011 ◽  
Vol 76 (Issue 7, Supplement 2) ◽  
pp. S37-S43 ◽  
Author(s):  
R. B. Halker ◽  
E. V. Hastriter ◽  
D. W. Dodick

2016 ◽  
Vol 48 ◽  
pp. 441
Author(s):  
Vincent J. Dalbo ◽  
Jordan L. Fox ◽  
Nattai R. Borges ◽  
Ben J. Dascombe ◽  
Kaelin C. Young ◽  
...  

2017 ◽  
Vol 12 (s2) ◽  
pp. S2-50-S2-54 ◽  
Author(s):  
Tim J. Gabbett ◽  
Rod Whiteley

The authors have observed that in professional sporting organizations the staff responsible for physical preparation and medical care typically practice in relative isolation and display tension as regards their attitudes toward training-load prescription (much more and much less training, respectively). Recent evidence shows that relatively high chronic training loads, when they are appropriately reached, are associated with reduced injury risk and better performance. Understanding this link between performance and training loads removes this tension but requires a better understanding of the relationship between the acute:chronic workload ratio (ACWR) and its association with performance and injury. However, there remain many questions in the area of ACWR, and we are likely at an early stage of our understanding of these parameters and their interrelationships. This opinion paper explores these themes and makes recommendations for improving performance through better synergies in support-staff approaches. Furthermore, aspects of the ACWR that remain to be clarified—the role of shared decision making, risk:benefit estimation, and clearer accountability—are discussed.


Sign in / Sign up

Export Citation Format

Share Document