Estimation of Passive Ankle Joint Moment during Standing and Walking

2005 ◽  
Vol 21 (1) ◽  
pp. 72-84 ◽  
Author(s):  
Tetsuro Muraoka ◽  
Tadashi Muramatsu ◽  
Daisuke Takeshita ◽  
Hiroaki Kanehisa ◽  
Tetsuo Fukunaga

This study estimated the passive ankle joint moment during standing and walking initiation and its contribution to total ankle joint moment during that time. The decrement of passive joint moment due to muscle fascicle shortening upon contraction was taken into account. Muscle fascicle length in the medial gastrocnemius, which was assumed to represent muscle fascicle length in plantarflexors, was measured using ultrasonography during standing, walking initiation, and cyclical slow passive ankle joint motion. Total ankle joint moment during standing and walking initiation was calculated from ground reaction forces and joint kinematics. Passive ankle joint moment during the cyclical ankle joint motion was measured via a dynamometer. Passive ankle joint moment during standing and at the time (Tp) when the MG muscle-tendon complex length was longest in the stance phase during walking initiation were 2.3 and 5.4 Nm, respectively. The muscle fascicle shortened by 2.9 mm during standing compared with the length at rest, which decreased the contribution of passive joint moment from 19.9% to 17.4%. The muscle fascicle shortened by 4.3 mm at Tp compared with the length at rest, which decreased the contribution of passive joint moment from 8.0% to 5.8%. These findings suggest that (a) passive ankle joint moment plays an important role during standing and walking initiation even in view of the decrement of passive joint moment due to muscle fascicle shortening upon muscle contraction, and (b) muscle fascicle shortening upon muscle contraction must be taken into account when estimating passive joint moment during movements.

2018 ◽  
Vol 124 (5) ◽  
pp. 1203-1211 ◽  
Author(s):  
Jeroen Aeles ◽  
Glen Lichtwark ◽  
Dries Peeters ◽  
Christophe Delecluse ◽  
Ilse Jonkers ◽  
...  

Many movements use stretch-shortening cycles of a muscle-tendon unit (MTU) for storing and releasing elastic energy. The required stretching of medial gastrocnemius (MG) tendinous tissue during jumps, however, requires large length changes of the muscle fascicles because of the lack of MTU length changes. This has a negative impact on the force-generating capacity of the muscle fascicles. The purpose of this study was to induce a MG MTU stretch before shortening by adding a prehop to the squat jump. Eleven well-trained athletes specialized in jumping performed a prehop squat jump (PHSJ) and a standard squat jump (SSJ). Kinematic data were collected using a 3D motion capture system and were used in a musculoskeletal model to calculate MTU lengths. B-mode ultrasonography of the MG was used to measure fascicle length and pennation angle during the jumps. By combining the muscle-tendon unit lengths, fascicle lengths, and pennation angles, the stretch and recoil of the series elastic element of MG were calculated using a simple geometric muscle-tendon model. Our results show less length changes of the muscle fascicles during the upward motion and lower maximal shortening velocities, increasing the moment-generating capacity of the plantar flexors, reflected in the higher ankle joint moment in the PHSJ compared with the SSJ. Although muscle-tendon interaction during the PHSJ was more optimal, athletes were not able to increase their jump height compared with the SSJ. NEW & NOTEWORTHY This is the first study that aimed to improve the muscle-tendon interaction in squat jumping. We effectively introduced a stretch to the medial gastrocnemius muscle-tendon unit resulting in lower maximal shortening velocities and thus an increase in the plantar flexor force-generating capacity, reflected in the higher ankle joint moment in the prehop squat jump compared with the standard squat jump. Here, we demonstrate an effective method for mechanical optimization of the muscle-tendon interaction in the medial gastrocnemius during squat jumping.


2011 ◽  
Vol 8 (3) ◽  
pp. 386-389 ◽  
Author(s):  
Henry C. Astley ◽  
Thomas J. Roberts

Anuran jumping is one of the most powerful accelerations in vertebrate locomotion. Several species are hypothesized to use a catapult-like mechanism to store and rapidly release elastic energy, producing power outputs far beyond the capability of muscle. Most evidence for this mechanism comes from measurements of whole-body power output; the decoupling of joint motion and muscle shortening expected in a catapult-like mechanism has not been demonstrated. We used high-speed marker-based biplanar X-ray cinefluoroscopy to quantify plantaris muscle fascicle strain and ankle joint motion in frogs in order to test for two hallmarks of a catapult mechanism: (i) shortening of fascicles prior to joint movement (during tendon stretch), and (ii) rapid joint movement during the jump without rapid muscle-shortening (during tendon recoil). During all jumps, muscle fascicles shortened by an average of 7.8 per cent (54% of total strain) prior to joint movement, stretching the tendon. The subsequent period of initial joint movement and high joint angular acceleration occurred with minimal muscle fascicle length change, consistent with the recoil of the elastic tendon. These data support the plantaris longus tendon as a site of elastic energy storage during frog jumping, and demonstrate that catapult mechanisms may be employed even in sub-maximal jumps.


2012 ◽  
Vol 7 (2) ◽  
pp. 168-176 ◽  
Author(s):  
Hisashi NAITO ◽  
Yasushi AKAZAWA ◽  
Ayu MIURA ◽  
Takeshi MATSUMOTO ◽  
Masao TANAKA

2005 ◽  
Vol 94 (5) ◽  
pp. 3126-3133 ◽  
Author(s):  
Benjamin Pasquet ◽  
Alain Carpentier ◽  
Jacques Duchateau

This study examines the effect of fascicle length change on motor-unit recruitment and discharge rate in the human tibialis anterior (TA) during isometric contractions of various intensities. The torque produced during dorsiflexion and the surface and intramuscular electromyograms (EMGs) from the TA were recorded in eight subjects. The behavior of the same motor unit ( n = 59) was compared at two ankle joint angles (+10 and −10° around the ankle neutral position). Muscle fascicle length of the TA was measured noninvasively using ultrasonography recordings. When the ankle angle was moved from 10° plantarflexion to 10° dorsiflexion, the torque produced during maximal voluntary contraction (MVC) was significantly reduced [35.2 ± 3.3 vs. 44.3 ± 4.2 (SD) Nm; P < 0.001] and the average surface EMG increased (0.47 ± 0.08 vs. 0.43 ± 0.06 mV; P < 0.05). At reduced ankle joint angle, muscle fascicle length declined by 12.7% ( P < 0.01) at rest and by 18.9% ( P < 0.001) during MVC. Motor units were activated at a lower recruitment threshold for short compared with long muscle fascicle length, either when expressed in absolute values (2.1 ± 2.5 vs. 3.6 ± 3.7 Nm; P < 0.001) or relative to their respective MVC (5.2 ± 6.1 vs. 8.8 ± 9.0%). Higher discharge rate and additional motor-unit recruitment were observed at a given absolute or relative torque when muscle fascicles were shortened. However, the data indicate that increased rate coding was mainly present at low torque level (<10% MVC), when the muscle-tendon complex was compliant, whereas recruitment of additional motor units played a dominant role at higher torque level and decreased compliance (10–35% MVC). Taken together, the results suggest that the central command is modulated by the afferent proprioceptive information during submaximal contractions performed at different muscle fascicle lengths.


2014 ◽  
Vol 7 (6) ◽  
pp. 460-465 ◽  
Author(s):  
Matthew T. Crill ◽  
Gregory Berlet ◽  
Christopher Hyer

Eccentric training for Achilles tendinosis (AT) has been reported to significantly improve patient symptoms. There has been no biomechanical explanation on the mechanism for specific rehabilitation technique. The purpose of this study was to determine changes in muscle architecture that occurred as a result of Achilles tendinosis injury and a subsequent eccentric rehabilitation program. Twenty-five patients (age, 53.3 ± 17.5 years) diagnosed with AT participated in 6 weeks of rehabilitation. Specific exercises for the ankle plantar flexors consisted of maximal load eccentric muscle action using 3 sets of 15 repetitions. Patients also completed a protocol for AT, which consisting of traditional rehabilitation. Medial gastrocnemius (GM) and lateral gastrocnemius (GL) muscle fascicle length and thickness were measured with ultrasound at 2-week intervals from initial treatment day to the end of 6 weeks of rehabilitation. Medial gastrocnemius fascicle length increased (45.1 ± 10.5 mm to 51.4 ± 10.5 mm; P = .22) between the initial day of rehabilitation and after 6 weeks of rehabilitation. But, GM thickness (16.3 ± 3.5 mm to 16.8 ± 2.0 mm), GL fascicle length (47.2 ± 10.0 mm to 47.1 ± 7.4 mm), and GL thickness (14.9 ± 5.2 mm to 14.4 ± 2.7 mm) did not change as a result of rehabilitation. A 6-week eccentric-biased exercise increased the GM muscle fascicle length by 12%, but GM thickness, GL fascicle length, and GL thickness did not change as a result of rehabilitation. Eccentric training for the treatment of AT is well recognized, but the mechanism of action has not been previously reported. A 6-week eccentric training protocol increased the GM muscle fascicle length by 12%, and this correlated with improvement in a validated patient outcome scoring system. Further study is warranted to determine a predictive relationship between improvement of GM fascicle length and outcome scores. Levels of Evidence: Therapeutic, Level IV: Case series


2019 ◽  
Vol 33 (4) ◽  
pp. 245-259 ◽  
Author(s):  
Maud Pradines ◽  
Mouna Ghedira ◽  
Raphaël Portero ◽  
Ingrid Masson ◽  
Christina Marciniak ◽  
...  

Introduction. The effects of long-term stretching (>6 months) in hemiparesis are unknown. This prospective, randomized, single-blind controlled trial compared changes in architectural and clinical parameters in plantar flexors of individuals with chronic hemiparesis following a 1-year guided self-stretch program, compared with conventional rehabilitation alone. Methods. Adults with chronic stroke-induced hemiparesis (time since lesion >1 year) were randomized into 1 of 2, 1-year rehabilitation programs: conventional therapy (CONV) supplemented with the Guided Self-rehabilitation Contract (GSC) program, or CONV alone. In the GSC group, specific lower limb muscles, including plantar flexors, were identified for a diary-based treatment utilizing daily, high-load, home self-stretching. Blinded assessments included (1) ultrasonographic measurements of soleus and medial gastrocnemius (MG) fascicle length and thickness, with change in soleus fascicle length as primary outcome; (2) maximum passive muscle extensibility (XV1, Tardieu Scale); (3) 10-m maximal barefoot ambulation speed. Results. In all, 23 individuals (10 women; mean age [SD], 56 [±12] years; time since lesion, 9 [±8] years) were randomized into either the CONV (n = 11) or GSC (n = 12) group. After 1 year, all significant between-group differences favored the GSC group: soleus fascicle length, +18.1mm [9.3; 29.9]; MG fascicle length, +6.3mm [3.5; 9.1]; soleus thickness, +4.8mm [3.0; 7.7]; XV1 soleus, +4.1° [3.1; 7.2]; XV1 gastrocnemius, +7.0° [2.1; 11.9]; and ambulation speed, +0.07m/s [+0.02; +0.16]. Conclusions. In chronic hemiparesis, daily self-stretch of the soleus and gastrocnemius over 1 year using GSC combined with conventional rehabilitation increased muscle fascicle length, extensibility, and ambulation speed more than conventional rehabilitation alone.


Sign in / Sign up

Export Citation Format

Share Document