Gender Differences in Lower Limb Kinematics During Stair Descent

2013 ◽  
Vol 29 (4) ◽  
pp. 413-420 ◽  
Author(s):  
Rodrigo de M. Baldon ◽  
Daniel F.M. Lobato ◽  
Leonardo Furlan ◽  
Fábio Serrão

The purpose of this study was to compare lower limb kinematics between genders during stair descent. Fifteen females and fifteen males who were healthy and active were included in this study. The lower limb kinematics (pelvis, femur and knee) in the coronal and transversal planes were assessed during stair descent at 30°, 40°, 50° and 60° of knee flexion. The study found that females showed greater knee medial rotation for all the knee flexion angles (P= .02−.001), greater femoral adduction (P= .01 for all variables), with exception for 30° (P= .13), and greater femoral lateral rotation at 60° (P= .04). Females also showed a trend to have greater knee valgus at all the knee flexion angles (P= .06−.11) as well as less contralateral pelvis elevation at 50° and 60° (P= .10 and .12, respectively). This study showed that females carry out the stair descent with a lower limb alignment that might predispose them to develop overuse knee injuries, such as the iliotibial band syndrome and patellofemoral pain syndrome. Further prospective investigations should be carried out to verify whether these variables are factors that could predict these knee injuries.

2011 ◽  
Vol 27 (3) ◽  
pp. 223-232 ◽  
Author(s):  
Rodrigo de Marche Baldon ◽  
Daniel Ferreira Moreira Lobato ◽  
Lívia Pinheiro Carvalho ◽  
Paulo Roberto Pereira Santiago ◽  
Benedito Galvão Benze ◽  
...  

The purposes of this study were to compare lower-limb kinematics between genders, and determine the relationships among eccentric hip abductor and lateral rotator torques and lower-limb kinematics. The movements of the pelvis, femur, and knee were calculated for 16 women and 16 men during the single-leg squat. Eccentric hip abductor and lateral rotator torques were measured using an isokinetic dynamometer. The results showed that women had greater contralateral pelvic depression, femur adduction, and knee abduction than men. The eccentric hip abductor and lateral rotator torques were correlated with coronal plane femur and knee movements in the overall sample. When the genders were analyzed separately, it was observed that women with greater eccentric hip abductor torque exhibited less femur adduction and femur medial rotation, and greater knee adduction excursion. No significant relationship was observed between the isokinetic and kinematic variables in the male group. The differences between the genders help to explain the greater rate of knee disorders observed in women. Moreover, the eccentric hip abduction action seemed to be more important in women to control the lower-limb movements.


2022 ◽  
Author(s):  
Yuki Saito ◽  
Tomoya Ishida ◽  
Yoshiaki Kataoka ◽  
Ryo Takeda ◽  
Shigeru Tadano ◽  
...  

Abstract Background: Locomotive syndrome (LS) is a condition where a person requires nursing care services due to problems with locomotive abilities and musculoskeletal systems. Individuals with LS have a reduced walking speed compared to those without LS. However, differences in lower-limb kinematics and during walking between individuals with and without LS are not fully understood. The purpose of this study is to clarify the characteristics of gait kinematics using wearable sensors for individuals with LS.Methods: We assessed 125 people aged 65 years and older who utilized a public health promotion facility. The participants were grouped into Non-LS, LS-stage 1, LS-stage 2 (large number indicate worse locomotive ability) based on 25-question Geriatric Locomotive Function Scale (GLFS-25). Spatiotemporal parameters and lower-limb kinematics during 10-m walking test were analyzed by 7-inertia-sensors based motion analysis system. Peak joint angles during stance and swing phase as well as gait speed, cadence and step length were compared among all groups.Results: The number of each LS stage was 69, 33, 23 for Non-LS, LS-stage 1, LS-stage 2, respectively. LS-stage2 group showed significantly smaller peak hip extension angle, hip flexion angle and knee flexion angle than Non-LS group (hip extension: Non-LS: 9.5 ± 5.3°, LS-stage 2: 4.2 ± 8.2°, P = 0.002; hip flexion: No-LS: 34.2 ± 8.8°, LS-stage 2: 28.5 ± 9.5°, P = 0.026; knee flexion: Non-LS: 65.2 ± 18.7°, LS-stage 2: 50.6 ± 18.5°, P = 0.005). LS-stage 1 and LS-stage 2 groups showed significantly slower gait speed than Non-LS group (Non-LS 1.3 ± 0.2 m/s, LS-stage1 1.2 ± 0.2 m/s, LS-stage2 1.1 ± 0.2 m/s, P < 0.001).Conclusions: LS-stage2 group showed significantly different lower-limb kinematics compared with Non-LS group including smaller hip extension, hip flexion and knee flexion. The intervention based on these kinematic characteristics measured by wearable sensors would be useful to improve the locomotive ability for individuals classified LS-stage2.


Biomechanics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 190-201
Author(s):  
Pathmanathan Cinthuja ◽  
Graham Arnold ◽  
Rami J. Abboud ◽  
Weijie Wang

There is a lack of evidence about the ways in which balance ability influences the kinematic and kinetic parameters and muscle activities during gait among healthy individuals. The hypothesis is that balance ability would be associated with the lower limb kinematics, kinetics and muscle activities during gait. Twenty-nine healthy volunteers (Age 32.8 ± 9.1; 18 males and 11 females) performed a Star Excursion Balance test to measure their dynamic balance and walked for at least three trials in order to obtain a good quality of data. A Vicon® 3D motion capture system and AMTI® force plates were used for the collection of the movement data. The selected muscle activities were recorded using Delsys® Electromyography (EMG). The EMG activities were compared using the maximum values and root mean squared (RMS) values within the participants. The joint angle, moment, force and power were calculated using a Vicon Plug-in-Gait model. Descriptive analysis, correlation analysis and multivariate linear regression analysis were performed using SPSS version 23. In the muscle activities, positive linear correlations were found between the walking and balance test in all muscles, e.g., in the multifidus (RMS) (r = 0.800 p < 0.0001), vastus lateralis (RMS) (r = 0.639, p < 0.0001) and tibialis anterior (RMS) (r = 0.539, p < 0.0001). The regression analysis models showed that there was a strong association between balance ability (i.e., reaching distance) and the lower limb muscle activities (i.e., vastus medialis–RMS) (R = 0.885, p < 0.0001), and also between balance ability (i.e., reaching distance) and the lower limb kinematics and kinetics during gait (R = 0.906, p < 0.0001). In conclusion, the results showed that vastus medialis (RMS) muscle activity mainly contributes to balance ability, and that balance ability influences the lower limb kinetics and kinematics during gait.


2021 ◽  
pp. 1-9
Author(s):  
James R. Forsyth ◽  
Christopher J. Richards ◽  
Ming-Chang Tsai ◽  
John W. Whitting ◽  
Diane L. Riddiford-Harland ◽  
...  

2012 ◽  
Vol 15 (2) ◽  
pp. 169-174 ◽  
Author(s):  
Mark G.L. Sayers ◽  
Amanda L. Tweddle ◽  
Joshua Every ◽  
Aaron Wiegand

Sign in / Sign up

Export Citation Format

Share Document