scholarly journals Association Between Knee Moments During Stair Navigation and Participant-Related Factors in Individuals With Anterior Cruciate Ligament Reconstruction: A Cross-Sectional Study

2021 ◽  
pp. 1-7
Author(s):  
Mandeep Kaur ◽  
Daniel Cury Ribeiro ◽  
Kate E. Webster ◽  
Gisela Sole

Context: Altered knee joint mechanics may be related to quadriceps muscle strength, time since surgery, and sex following anterior cruciate ligament reconstruction (ACLR). The aim of this study was to investigate the association between knee moments, with participant-related factors during stair navigation post-ACLR. Design: Cross-sectional study. Methods: A total of 30 participants (14 women) with ACLR, on average 7.0 (SD 4.4) years postsurgery were tested during stair ascent and descent in a gait laboratory. Motion capture was conducted using a floor-embedded force plate and 11 infrared cameras. Quadriceps concentric and eccentric muscle strength was measured with an isokinetic dynamometer at 60°/s, and peak torques recorded. Multiple regression analyses were performed between external knee flexion and adduction moments, respectively, and quadriceps peak torque, sex, and time since ACLR. Results: Higher concentric quadriceps strength and female sex accounted for 55.7% of the total variance for peak knee flexion moment during stair ascent (P < .001). None of the independent variables accounted for variance in knee adduction moment (P = .698). No significant associations were found for knee flexion and adduction moments during for stair descent. Conclusion: Higher quadriceps concentric strength and sex explains major variance in knee flexion moments during stair ascent. The strong association between muscle strength and external knee flexion moments during stair ascent indicate rehabilitation tailored for quadriceps may optimize knee mechanics, particularly for women.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shunsuke Ohji ◽  
Junya Aizawa ◽  
Kenji Hirohata ◽  
Takehiro Ohmi ◽  
Sho Mitomo ◽  
...  

Abstract Purpose To investigate the relationship between single-leg hop distance (SLHD), normalized body height, and return-to-sports (RTS) status after anterior cruciate ligament reconstruction (ACLR) and to identify the cut-off value for SLHD on the operated side. Methods Seventy-three patients after primary ACLR (median 13.5 months) participated in this cross-sectional study. Participants were divided into ‘‘Yes-RTS’’ (YRTS) or ‘‘No-RTS’’ (NRTS) groups based on a self-reported questionnaire. SLHD was measured, and the limb symmetry index (LSI) and SLHD (%body height) were calculated. A minimum p-value approach was used to calculate the SLHD cut-off points (%body height) on the operated side that were strongly associated with the RTS status. Logistic regression analysis was used to analyse the association between RTS status and SLHD cut-off point (%body height). Isokinetic strength and Tampa scale for kinesiophobia (TSK) were measured as covariates. Results Among 73 patients, 43 (59%) were assigned to the YRTS and 30 (41%) to the NRTS group. The 70% body height cut-off point for SLHD on the operated side was most strongly associated with RTS status. In a logistic regression analysis including other covariates, SLHD (%body height) < 70% and TSK were negatively associated with RTS status. Except for two participants, the LSI of the SLHD exceeded 90% and there was no significant association between the LSI of the SLHD and RTS status. Conclusion Even after improvement in the LSI of the SLHD, planning rehabilitation with the goal of achieving SLHD over 70% body height may be important for supporting RTS after ACLR. Level of evidence Cross-sectional study, Level IV


2020 ◽  
Vol 48 (13) ◽  
pp. 3214-3223
Author(s):  
Jakob Lindberg Nielsen ◽  
Kamilla Arp ◽  
Mette Lysemose Villadsen ◽  
Stine Sommer Christensen ◽  
Per Aagaard

Background: Anterior cruciate ligament (ACL) rupture is a serious injury with a high prevalence worldwide, and subsequent ACL reconstructions (ACLR) appear to be most commonly performed using hamstring-derived (semitendinosus tendon) autografts. Recovery of maximal muscle strength to ≥90% of the healthy contralateral limb is considered an important criterion for safe return to sports. However, the speed of developing muscular force (ie, the rate of force development [RFD]) is also important for the performance of many types of activities in sports and daily living, yet RFD of the knee extensor and flexor muscles has apparently never been examined in patients who undergo ACLR with hamstring autograft (HA). Purpose: To examine potential deficits in RFD, maximal muscle strength (ie, maximal voluntary isometric contraction [MVIC]), and functional capacity of ACLR-HA limbs in comparison with the healthy contralateral leg and matched healthy controls 3 to 9 months after surgery. Study Design: Cross-sectional study; Level of evidence: 3. Methods: A total of 23 young patients who had undergone ACLR-HA 3 to 9 months earlier were matched by age to 14 healthy controls; both groups underwent neuromuscular screening. Knee extensor and flexor MVIC and RFD, as well as functional capacity (single-leg hop for distance [SLHD] test, timed single-leg sit-to-stand [STS] test), were assessed on both limbs. Furthermore, patient-reported knee function (Knee injury and Osteoarthritis Outcome Score) was assessed. Results: Knee extensor and flexor MVIC and RFD were markedly compromised in ACLR-HA limbs compared with healthy contralateral limbs (MVIC for extensor and flexor, 13% and 26%, respectively; RFD, 14%-17% and 32%-39%) and controls (MVIC, 16% and 31%; RFD, 14%-19% and 30%-41%) ( P < .05-.001). Further, ACLR-HA limbs showed reduced functional capacity (reduced SLHD and STS performance) compared with contralateral limbs (SLHD, 11%; STS, 14%) and controls (SLHD, 20%; STS, 31%) ( P < .01-.001). Strength (MVIC) and functional (SLHD) parameters were positively related to the duration of time after surgery ( P < .05), although this relationship was not observed for RFD and STS. Conclusion: Knee extensor and flexor RFD and maximal strength, as well as functional single-leg performance, remained substantially reduced in ACLR-HA limbs compared with noninjured contralateral limbs and healthy controls 3 to 9 months after reconstructive surgery.


Sign in / Sign up

Export Citation Format

Share Document