Cytochrome b5 Is a Major Determinant of Human Cytochrome P450 CYP2D6 and CYP3A4 Activity In Vivo

2015 ◽  
Vol 87 (4) ◽  
pp. 733-739 ◽  
Author(s):  
Colin J. Henderson ◽  
Lesley A. McLaughlin ◽  
Nico Scheer ◽  
Lesley A. Stanley ◽  
C. Roland Wolf
2008 ◽  
Vol 23 (4) ◽  
pp. 343-347 ◽  
Author(s):  
Angélica de Fátima de Assunção Braga ◽  
Caroline Coutinho de Barcelos ◽  
Franklin Sarmento da Silva Braga ◽  
Samanta Cristina Antoniassi Fernandes ◽  
Yoko Oshima Franco ◽  
...  

PURPOSE: To evaluate in vitro and in vivo neuromuscular blockade produced by rocuronium in rats treated with Phenobarbital and to determine cytochrome P450 and cytochrome b5 concentrations in hepatic microsomes. METHODS: Thirty rats were included in the study and distributed into 6 groups of 5 animals each. Rats were treated for seven days with phenobarbital (20 mg/kg) and the following parameters were evaluated: 1) the amplitude of muscle response in the preparation of rats exposed to phenobarbital; 2) rocuronium effect on rat preparation exposed or not to phenobarbital; 3) concentrations of cytochrome P450 and cytochrome b5 in hepatic microsomes isolated from rats exposed or not to phenobarbital. The concentration and dose of rocuronium used in vitro and in vivo experiments were 4 µg/mL and 0,6 mg/kg, respectively. RESULTS: Phenobarbital in vitro and in vivo did not alter the amplitude of muscle response. The neuromuscular blockade in vitro produced by rocuronium was significantly different (p=0.019) between exposed (20%) and not exposed (60%) rats; the blockade in vivo was significantly greater (p=0.0081) in treated rats (93.4%). The enzymatic concentrations were significantly greater in rats exposed to phenobarbital. CONCLUSIONS: Phenobarbital alone did not compromise neuromuscular transmission. It produced enzymatic induction, and neuromuscular blockade in vivo produced by rocuronium was potentiated by phenobarbital.


2017 ◽  
Vol 9 (7) ◽  
pp. 163-177
Author(s):  
Dominik Dahlinger ◽  
Sevinc Aslan ◽  
Markus Pietsch ◽  
Sebastian Frechen ◽  
Uwe Fuhr

Background: The objective of this study was to examine the inhibitory potential of darifenacin, fesoterodine, oxybutynin, propiverine, solifenacin, tolterodine and trospium chloride on the seven major human cytochrome P450 enzymes (CYP) by using a standardized and validated seven-in-one cytochrome P450 cocktail inhibition assay. Methods: An in vitro cocktail of seven highly selective probe substrates was incubated with human liver microsomes and varying concentrations of the seven test compounds. The major metabolites of the probe substrates were simultaneously analysed using a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Enzyme kinetics were estimated by determining IC50 and Ki values via nonlinear regression. Obtained Ki values were used for predictions of potential clinical impact of the inhibition using a static mechanistic prediction model. Results: In this study, 49 IC50 experiments were conducted. In six cases, IC50 values lower than the calculated threshold for drug–drug interactions (DDIs) in the gut wall were observed. In these cases, no increase in inhibition was determined after a 30 min preincubation. Considering a typical dosing regimen and applying the obtained Ki values of 0.72 µM (darifenacin, 15 mg daily) and 7.2 µM [propiverine, 30 mg daily, immediate release (IR)] for the inhibition of CYP2D6 yielded a predicted 1.9-fold and 1.4-fold increase in the area under the curve (AUC) of debrisoquine (CYP2D6 substrate), respectively. Due to the inhibition of the particular intestinal CYP3A4, the obtained Ki values of 14 µM of propiverine (30 mg daily, IR) resulted in a predicted doubling of the AUC for midazolam (CYP3A4 substrate). Conclusions: In vitro/ in vivo extrapolation based on pharmacokinetic data and the conducted screening experiments yielded similar effects of darifenacin on CYP2D6 and propiverine on CYP3A4 as obtained in separately conducted in vivo DDI studies. As a novel finding, propiverine was identified to potentially inhibit CYP2D6 at clinically occurring concentrations.


2008 ◽  
Vol 53 (2) ◽  
pp. 541-551 ◽  
Author(s):  
Seongwook Jeong ◽  
Phuong D. Nguyen ◽  
Zeruesenay Desta

ABSTRACT Voriconazole is an effective antifungal drug, but adverse drug-drug interactions associated with its use are of major clinical concern. To identify the mechanisms of these interactions, we tested the inhibitory potency of voriconazole with eight human cytochrome P450 (CYP) enzymes. Isoform-specific probes were incubated with human liver microsomes (HLMs) (or expressed CYPs) and cofactors in the absence and the presence of voriconazole. Preincubation experiments were performed to test mechanism-based inactivation. In pilot experiments, voriconazole showed inhibition of CYP2B6, CYP2C9, CYP2C19, and CYP3A (half-maximal [50%] inhibitory concentrations, <6 μM); its effect on CYP1A2, CYP2A6, CYP2C8, and CYP2D6 was marginal (<25% inhibition at 100 μM voriconazole). Further detailed experiments with HLMs showed that voriconazole is a potent competitive inhibitor of CYP2B6 (Ki < 0.5), CYP2C9 (Ki = 2.79 μM), and CYP2C19 (Ki = 5.1 μM). The inhibition of CYP3A by voriconazole was explained by noncompetitive (Ki = 2.97 μM) and competitive (Ki = 0.66 μM) modes of inhibition. Prediction of the in vivo interaction of voriconazole from these in vitro data suggests that voriconazole would substantially increase the exposure of drugs metabolized by CYP2B6, CYP2C9, CYP2C19, and CYP3A. Clinicians should be aware of these interactions and monitor patients for adverse effects or failure of therapy.


2007 ◽  
Vol 82 (5) ◽  
pp. 531-540 ◽  
Author(s):  
J Y Ryu ◽  
I S Song ◽  
Y E Sunwoo ◽  
J H Shon ◽  
K H Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document