cyp3a4 activity
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 21)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seonghae Yoon ◽  
Seongmee Jeong ◽  
Eben Jung ◽  
Ki Soon Kim ◽  
Inseung Jeon ◽  
...  

AbstractTo investigate pharmacokinetic and pharmacodynamic differences of zolpidem between males and females and their causes, including CYP3A4 activity. A single oral dose of zolpidem (10 mg) was administered to 15 male and 15 female healthy subjects. Blood samples were collected up to 12 h post-dose to determine plasma zolpidem concentrations. Pharmacokinetic parameters were obtained using non-compartmental analysis. Digit symbol substitution test, choice reaction time, and visual analog scale of sleepiness were used to evaluate pharmacodynamics. We measured CYP3A4 activity using 4β-hydroxycholesterol, an endogenous metabolite. Mean maximum plasma concentration and area under the plasma concentration–time curve were higher for females than for males (9.9% and 32.5%, respectively); other pharmacokinetic parameters showed no significant differences. Pharmacodynamic scores for females showed delayed recovery compared with that for males. CYP3A4 activity was higher in females than in males (p = 0.030). There was no serious adverse event, and adverse event incidence was not different between the sexes. Zolpidem exposure was about 30% higher in females than in males. Delayed pharmacodynamic score recovery in females could be related to higher zolpidem concentrations. Although apparent clearance was lower in females, systemic clearance might not be the cause of the different exposures to zolpidem.


Author(s):  
Christian Schulz ◽  
Friedrich Jung ◽  
Jan-Heiner Küpper

Cell-based in vitro liver models are an important tool in the development and evaluation of new drugs in pharmacological and toxicological drug assessment. Hepatic microsomal enzyme complexes, consisting of cytochrome P450 oxidoreductase (CPR) and cytochrome P450 monooxygenases (CYPs), play a decisive role in catalysing phase-1 biotransformation of pharmaceuticals and xenobiotics. For a comprehensive understanding of the phase-1 biotransformation of drugs, the availability of well-characterized substances for the targeted modulation of in vitro liver models is essential. In this study, we investigated diphenyleneiodonium (DPI) for its ability to inhibit phase-1 enzyme activity and further its toxicological profile in an in vitro HepG2 cell model with and without recombinant expression of the most important drug metabolization enzyme CYP3A4. Aim of the study was to identify effective DPI concentrations for CPR/CYP activity modulation and potentially associated dose and time dependent hepatotoxic effects. The cells were treated with DPI doses up to 5,000nM (versus vehicle control) for a maximum of 48 h and subsequently examined for CYP3A4 activity as well as various toxicological relevant parameters such as cell morphology, integrity and viability, intracellular ATP level, and proliferation. Concluding, the experiments revealed a time- and concentration-dependent DPI mediated partial and complete inhibition of CYP3A4 activity in CYP3A4 overexpressing HepG2-cells (HepG2-CYP3A4). Other cell functions, including ATP synthesis and consequently the proliferation were negatively affected in both in vitro cell models. Since neither cell integrity nor cell viability were reduced, the effect of DPI in HepG2 can be assessed as cytostatic rather than cytotoxic.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1261
Author(s):  
Rui Xue Zhang ◽  
Ken Dong ◽  
Zhigao Wang ◽  
Ruimin Miao ◽  
Weijia Lu ◽  
...  

Drug dosing in clinical practice, which determines optimal efficacy, toxicity or ineffectiveness, is critical to patients’ outcomes. However, many orally administered therapeutic drugs are susceptible to biotransformation by a group of important oxidative enzymes, known as cytochrome P450s (CYPs). In particular, CYP3A4 is a low specificity isoenzyme of the CYPs family, which contributes to the metabolism of approximately 50% of all marketed drugs. Induction or inhibition of CYP3A4 activity results in the varied oral bioavailability and unwanted drug-drug, drug-food, and drug-herb interactions. This review explores the need for addressing intestinal CYP3A4 metabolism and investigates the opportunities to incorporate lipid-based oral drug delivery to enable precise dosing. A variety of lipid- and lipid-polymer hybrid-nanoparticles are highlighted to improve drug bioavailability. These drug carriers are designed to target different intestinal regions, including (1) local saturation or inhibition of CYP3A4 activity at duodenum and proximal jejunum; (2) CYP3A4 bypass via lymphatic absorption; (3) pH-responsive drug release or vitamin-B12 targeted cellular uptake in the distal intestine. Exploitation of lipidic nanosystems not only revives drugs removed from clinical practice due to serious drug-drug interactions, but also provide alternative approaches to reduce pharmacokinetic variability.


2021 ◽  
Vol 1 (3) ◽  
pp. 135-141
Author(s):  
KATSUYA MAKIHARA ◽  
YUKA SHIMEDA ◽  
TOMOKAZU MATSUMURA

Background/Aim: Docetaxel (DTX) is metabolized by liver cytochromes P450 (CYP) 3A4 (CYP3A4) and 3A5 (CYP3A5) CYP3A4 activity is considered the main factor affecting the effectiveness in DTX clearance. We, therefore, explored the association between DTX-induced febrile neutropenia (FN) and concomitant polypharmacy involving CYP3A4 inhibitors in cancer patients. Patients and Methods: Among patients who received docetaxel, we compared the number of concomitant medications between patients with and without FN, and risk factors associated with FN were identified. Results: The total number of concomitant CYP3A4 inhibitors and substrates used was significantly higher in patients with FN [mean: 2.1 (95% confidence interval (CI)=1.5-2.9)] than in those without FN [mean: 1.4 (95% CI=1.0-1.8)] (p=0.01). The only risk factor for FN was the use of ≥2 concomitant CYP3A4 inhibitors and substrates in total (OR=4.82, 95% CI=1.77-14.1; p=0.002). Conclusion: Polypharmacy involving CYP3A4 inhibitors and substrates increases the risk of DTX-induced FN.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 808
Author(s):  
Dirk Theile ◽  
Lelia Wagner ◽  
Cindy Bay ◽  
Walter Emil Haefeli ◽  
Johanna Weiss

Interferon-alpha (IFN-α) is suggested to cause pharmacokinetic drug interactions by lowering expression of drug disposition genes through affecting the activities of nuclear factor kappa B (NF-ĸB) and pregnane X receptor (PXR). The time-resolved impact of IFN-α 2a (1000 U/mL; 5000 U/mL; 2 h to 30 h) on the activities of NF-ĸB and PXR and mRNA expression (5000 U/mL; 24 h, 48 h) of selected drug disposition genes and on cytochrome P450 (CYP3A4) activity in LS180 cells (5000 U/mL; 24 h, 48 h) was evaluated using luciferase-based reporter gene assays, reverse transcription polymerase chain reaction, and luminescence-based CYP3A4 activity assays. The cross-talk between NF-ĸB activation and PXR suppression was evaluated by NF-ĸB blockage (10 µM parthenolide). IFN-α 2a initially (2 h, 6 h) enhanced NF-ĸB activity 2-fold and suppressed PXR activity by 30%. mRNA of CYP3A4 was halved, whereas UGT1A1 was increased (1.35-fold) after 24 h. After 48 h, ABCB1 expression was increased (1.76-fold). CYP3A4 activity remained unchanged after 24 h, but was enhanced after 48 h (1.35-fold). IFN-α 2a demonstrated short-term suppressive effects on PXR activity and CYP3A4 mRNA expression, likely mediated by activated NF-ĸB. Longer exposure enhanced CYP3A4 activity. Clinical trials should evaluate the relevance by investigating the temporal effects of IFN-α on CYP3A4 using a sensitive marker substrate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Loes P. M. Duivenvoorde ◽  
Jochem Louisse ◽  
Nicole E. T. Pinckaers ◽  
Tien Nguyen ◽  
Meike van der Zande

AbstractFlow conditions have been shown to be important in improving longevity and functionality of primary hepatocytes, but the impact of flow on HepaRG cells is largely unknown. We studied the expression of genes encoding CYP enzymes and transporter proteins and CYP1 and CYP3A4 activity during 8 weeks of culture in HepaRG cells cultured under static conditions (conventional 24-/96-well plate culture with common bicarbonate/CO2 buffering) and under flow conditions in an organ-on-chip (OOC) device. Since the OOC-device is a closed system, bicarbonate/CO2 buffering was not possible, requiring application of another buffering agent, such as HEPES. In order to disentangle the effects of HEPES from the effects of flow, we also applied HEPES-supplemented medium in static cultures and studied gene expression and CYP activity. We found that cells cultured under flow conditions in the OOC-device, as well as cells cultured under static conditions with HEPES-supplemented medium, showed more stable gene expression levels. Furthermore, only cells cultured in the OOC-device showed relatively high baseline CYP1 activity, and their gene expression levels of selected CYPs and transporters were most similar to gene expression levels in human primary hepatocytes. However, there was a decrease in baseline CYP3A4 activity under flow conditions compared to HepaRG cells cultured under static conditions. Altogether, the present study shows that HepaRG cells cultured in the OOC-device were more stable than in static cultures, being a promising in vitro model to study hepatoxicity of chemicals upon chronic exposure.


2020 ◽  
Vol 11 (3) ◽  
pp. 530-536
Author(s):  
Behjat Sheikholeslami ◽  
Zahra Tootoonchi ◽  
Hoda Lavasani ◽  
Yalda Hosseinzadeh Ardakani ◽  
Mohammadreza Rouini

Purpose: MDMA (methylenedioxymethamphetamine) is a synthetic compound, which is a structurally derivative of amphetamine. Also, it acts like an amphetamine, structurally, and functionally. MDMA uses mechanism-based inhibition, to inhibit isoenzyme CYP2D6. It can also inhibit other isoenzymes contributing to its metabolism, including CYP3A4 which is the most important member of the cytochrome P450 superfamily. Since more than 50% of drugs are metabolized by CYP3A4, its inhibition may cause harmful and even lethal drug interactions. Tramadol, as an opioid-like analgesic, is mainly metabolized into O-desmethyl tramadol (M1), by CYP2D6 and undergoes N-demethylation to M2, by CYP2B6 and CYP3A4. Due to the significant potential of abusing tramadol, either alone or in combination with MDMA, the rate of its toxicity and side effects may increase following possible MDMA relevant enzyme inhibition. Methods: Different doses of MDMA (1-10 mg/Kg) were intraperitoneally administered to Wistar male rats of both control and treatment groups. Then, after one hour, their isolated livers were perfused by perfusion buffer containing tramadol (1 µg/mL). Afterward, perfusate samples were collected. They were analyzed by HPLC to determine the concentrations of tramadol and its metabolites. Results: MDMA administration in treatment groups reduced M1 production. On the other hand, by following the treatment with different MDMA doses, the M2 metabolic ratio increased by 46 to 101%. Conclusion: it seems that the regular doses of MDMA cannot inhibit the CYP3A4 activity.


Sign in / Sign up

Export Citation Format

Share Document